論文の概要: Towards Trust of Explainable AI in Thyroid Nodule Diagnosis
- arxiv url: http://arxiv.org/abs/2303.04731v1
- Date: Wed, 8 Mar 2023 17:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 13:10:48.432625
- Title: Towards Trust of Explainable AI in Thyroid Nodule Diagnosis
- Title(参考訳): 甲状腺結節診断における説明可能なAIの信頼に向けて
- Authors: Truong Thanh Hung Nguyen, Van Binh Truong, Vo Thanh Khang Nguyen, Quoc
Hung Cao, Quoc Khanh Nguyen
- Abstract要約: 我々は,甲状腺結節診断アプリケーションにおけるブラックボックスAIモデルの予測を説明するために,最先端のeXplainable AI(XAI)手法を適用した。
我々は,検出された結節が存在しない場合を説明するために,新しい統計ベースのXAI手法,すなわちカーネル密度推定と密度マップを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to explain the prediction of deep learning models to end-users is
an important feature to leverage the power of artificial intelligence (AI) for
the medical decision-making process, which is usually considered
non-transparent and challenging to comprehend. In this paper, we apply
state-of-the-art eXplainable artificial intelligence (XAI) methods to explain
the prediction of the black-box AI models in the thyroid nodule diagnosis
application. We propose new statistic-based XAI methods, namely Kernel Density
Estimation and Density map, to explain the case of no nodule detected. XAI
methods' performances are considered under a qualitative and quantitative
comparison as feedback to improve the data quality and the model performance.
Finally, we survey to assess doctors' and patients' trust in XAI explanations
of the model's decisions on thyroid nodule images.
- Abstract(参考訳): ディープラーニングモデルの予測をエンドユーザに説明する能力は、医学的意思決定プロセスにおいて人工知能(AI)の力を活用する上で重要な特徴である。
本稿では,甲状腺結節診断アプリケーションにおけるブラックボックスAIモデルの予測について,最先端のeXplainable AI(XAI)手法を適用した。
我々は,検出された結節がない場合を説明するために,新しい統計ベースのXAI手法,すなわちカーネル密度推定と密度マップを提案する。
XAI法の性能は,データ品質とモデル性能を改善するためのフィードバックとして質的かつ定量的に比較される。
最後に,甲状腺結節画像におけるXAIモデルの決定について,医師の信頼度とXAIモデルへの信頼度を調査した。
関連論文リスト
- Uncovering Knowledge Gaps in Radiology Report Generation Models through Knowledge Graphs [18.025481751074214]
我々はReXKGというシステムを導入し,処理されたレポートから構造化された情報を抽出し,放射線学知識グラフを構築する。
我々はAIと人手による放射線学レポートの詳細な比較分析を行い、専門家モデルとジェネラリストモデルの両方のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-08-26T16:28:56Z) - Robustness of Explainable Artificial Intelligence in Industrial Process Modelling [43.388607981317016]
我々は,地中真実シミュレーションと感度解析に基づいて,現在のXAI手法を評価する。
モデル化された産業プロセスの真の感度を正確に予測する能力において,XAI法とXAI法の違いを示す。
論文 参考訳(メタデータ) (2024-07-12T09:46:26Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせて乳がんの診断を高度化するための統合フレームワークを提案する。
この方法論は、データセットの制限に対処するために、精巧なデータ前処理パイプラインと高度なデータ拡張技術を含んでいる。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
論文 参考訳(メタデータ) (2024-04-05T05:00:21Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
我々はカスタムXAIフレームワークを活用し、LIME(Local Interpretable Model-Agnostic Explanations)、SHAP(SHapley Additive ExPlanations)、Grad-Cam(Grad-weighted Class Activation Mapping)といったテクニックを取り入れた。
提案手法は, 戦略的医療手法の有効性を高め, 信頼度を高め, 医療応用の理解を促進することを目的としている。
我々はXAIフレームワークを脳腫瘍検出に応用し,正確かつ透明な診断方法を示した。
論文 参考訳(メタデータ) (2024-03-07T01:08:41Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review [4.918419052486409]
変形性膝関節症(OA)を診断するための既存の人工知能モデルは、その透明性と解釈可能性の欠如に対して批判を浴びている。
近年,説明可能な人工知能 (XAI) がモデルの予測に自信を与える特別な技術として出現している。
本報告では膝OA診断に用いるXAI技術について紹介する。
論文 参考訳(メタデータ) (2023-08-18T08:23:47Z) - GENIE-NF-AI: Identifying Neurofibromatosis Tumors using Liquid Neural
Network (LTC) trained on AACR GENIE Datasets [0.0]
神経線維腫症を診断するための解釈可能なAIアプローチを提案する。
提案手法は99.86%の精度で既存モデルより優れていた。
論文 参考訳(メタデータ) (2023-04-26T10:28:59Z) - Evaluating Explainable AI on a Multi-Modal Medical Imaging Task: Can
Existing Algorithms Fulfill Clinical Requirements? [42.75635888823057]
Heatmapは、AIモデルの予測の重要な特徴を強調する、説明の一形態である。
マルチモーダルな医用画像の意思決定において,ヒートマップがどの程度優れているかは分かっていない。
本稿では,この臨床的に重要であるが技術的に無視される問題に対処するために,MSFI(Modality-specific feature importance)尺度を提案する。
論文 参考訳(メタデータ) (2022-03-12T17:18:16Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。