論文の概要: Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review
- arxiv url: http://arxiv.org/abs/2308.09380v1
- Date: Fri, 18 Aug 2023 08:23:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 13:56:02.437527
- Title: Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review
- Title(参考訳): 説明可能な人工知能を用いた変形性膝関節症の診断
- Authors: Yun Xin Teoh, Alice Othmani, Siew Li Goh, Juliana Usman, Khin Wee Lai
- Abstract要約: 変形性膝関節症(OA)を診断するための既存の人工知能モデルは、その透明性と解釈可能性の欠如に対して批判を浴びている。
近年,説明可能な人工知能 (XAI) がモデルの予測に自信を与える特別な技術として出現している。
本報告では膝OA診断に用いるXAI技術について紹介する。
- 参考スコア(独自算出の注目度): 4.918419052486409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing artificial intelligence (AI) models for diagnosing knee
osteoarthritis (OA) have faced criticism for their lack of transparency and
interpretability, despite achieving medical-expert-like performance. This
opacity makes them challenging to trust in clinical practice. Recently,
explainable artificial intelligence (XAI) has emerged as a specialized
technique that can provide confidence in the model's prediction by revealing
how the prediction is derived, thus promoting the use of AI systems in
healthcare. This paper presents the first survey of XAI techniques used for
knee OA diagnosis. The XAI techniques are discussed from two perspectives: data
interpretability and model interpretability. The aim of this paper is to
provide valuable insights into XAI's potential towards a more reliable knee OA
diagnosis approach and encourage its adoption in clinical practice.
- Abstract(参考訳): 人工膝関節症(OA)を診断するための既存の人工知能(AI)モデルは、医療専門家のようなパフォーマンスを達成しているにもかかわらず、透明性と解釈性の欠如を批判されている。
この不透明さは、臨床実践の信頼を損なう。
近年,説明可能な人工知能(xai)が,予測の導出方法を明らかにすることで,モデルの予測に自信を与える技術として登場し,医療におけるaiシステムの利用を促進する。
本報告では膝OA診断に用いるXAI技術について紹介する。
XAI技術はデータ解釈可能性とモデル解釈可能性という2つの観点から議論されている。
本研究の目的は,xaiのより信頼性の高い膝oa診断アプローチへの可能性に関する貴重な知見を提供し,臨床応用を促進することである。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
論文 参考訳(メタデータ) (2024-03-23T02:15:23Z) - Evaluation of Popular XAI Applied to Clinical Prediction Models: Can
They be Trusted? [2.0089256058364358]
透明性と説明可能性の欠如は、機械学習(ML)アルゴリズムの臨床的採用を妨げる。
本研究は、医療現場における予測モデルの説明に使用される2つの一般的なXAI手法を評価する。
論文 参考訳(メタデータ) (2023-06-21T02:29:30Z) - XAI Renaissance: Redefining Interpretability in Medical Diagnostic
Models [0.0]
XAIルネッサンスは、医療診断モデルの解釈可能性を再定義することを目的としている。
XAI技術は、医療専門家にこれらのモデルを正確で信頼性の高い診断に理解し、信頼し、効果的に活用することを可能にする。
論文 参考訳(メタデータ) (2023-06-02T16:42:20Z) - Dermatologist-like explainable AI enhances trust and confidence in
diagnosing melanoma [0.0]
人工知能システムがメラノーマを識別する方法における透明性の欠如は、ユーザーの受け入れに深刻な障害をもたらす。
ほとんどのXAI法は、正確に位置付けられたドメイン固有の説明を生成できないため、説明の解釈が困難である。
我々は、皮膚科医が容易に解釈できるテキストと地域に基づく説明を生成するXAIシステムを開発した。
論文 参考訳(メタデータ) (2023-03-17T17:25:55Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。