論文の概要: Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography
- arxiv url: http://arxiv.org/abs/2504.12249v1
- Date: Wed, 16 Apr 2025 16:54:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:18.429908
- Title: Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography
- Title(参考訳): 胸部X線撮影における疾患検出のための放射線と深層学習モデルの比較評価
- Authors: Zhijin He, Alan B. McMillan,
- Abstract要約: 本研究は,胸部X線撮影における疾患検出のための放射線治療と深層学習によるアプローチの包括的評価である。
新型コロナウイルス、肺不透明症、ウイルス性肺炎に焦点が当てられている。
臨床実習におけるAI駆動診断ツールの統合について報告する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The application of artificial intelligence (AI) in medical imaging has revolutionized diagnostic practices, enabling advanced analysis and interpretation of radiological data. This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography, focusing on COVID-19, lung opacity, and viral pneumonia. While deep learning models, particularly convolutional neural networks (CNNs) and vision transformers (ViTs), learn directly from image data, radiomics-based models extract and analyze quantitative features, potentially providing advantages in data-limited scenarios. This study systematically compares the diagnostic accuracy and robustness of various AI models, including Decision Trees, Gradient Boosting, Random Forests, Support Vector Machines (SVM), and Multi-Layer Perceptrons (MLP) for radiomics, against state-of-the-art computer vision deep learning architectures. Performance metrics across varying sample sizes reveal insights into each model's efficacy, highlighting the contexts in which specific AI approaches may offer enhanced diagnostic capabilities. The results aim to inform the integration of AI-driven diagnostic tools in clinical practice, particularly in automated and high-throughput environments where timely, reliable diagnosis is critical. This comparative study addresses an essential gap, establishing guidance for the selection of AI models based on clinical and operational needs.
- Abstract(参考訳): 医用画像への人工知能(AI)の応用は診断の実践に革命をもたらし、放射線データの高度な分析と解釈を可能にした。
本研究は, 胸部X線撮影における放射線治療, 肺不透明度, ウイルス性肺炎を中心に, 放射線治療と深層学習による疾患検出の総合的評価を行った。
ディープラーニングモデル、特に畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像データから直接学習するが、放射能ベースのモデルは定量的特徴を抽出し分析し、データ制限シナリオで利点をもたらす可能性がある。
本研究は,最新のコンピュータビジョン深層学習アーキテクチャに対して,決定木,グラディエントブースティング,ランダムフォレスト,サポートベクトルマシン(SVM),マルチ層パーセプトロン(MLP)などのAIモデルの診断精度と堅牢性を系統的に比較する。
さまざまなサンプルサイズにわたるパフォーマンスメトリクスは、各モデルの有効性に関する洞察を示し、特定のAIアプローチが診断能力を向上する可能性のあるコンテキストを強調します。
この結果は,AIによる診断ツールの臨床実践,特にタイムリーで信頼性の高い診断が重要である自動化された高スループット環境での統合を知らせることを目的としている。
この比較研究は、臨床および手術のニーズに基づいてAIモデルの選択のためのガイダンスを確立する、重要なギャップに対処する。
関連論文リスト
- Towards Virtual Clinical Trials of Radiology AI with Conditional Generative Modeling [10.014130930114172]
本稿では,放射線学AIの仮想臨床試験(VCT)のために設計された条件付き生成AIモデルを紹介する。
画像と解剖学的構造の関節分布を学習することにより,実世界の患者集団の正確な再現を可能にした。
我々は,合成CTを用いたVCTを用いた放射線学AIモデルの有意義な評価を行った。
論文 参考訳(メタデータ) (2025-02-13T15:53:52Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Automated Radiology Report Generation: A Review of Recent Advances [5.965255286239531]
人工知能の最近の技術進歩は、自動放射線学レポート生成に大きな可能性を示している。
人工知能の最近の進歩は、自動放射線診断レポート生成に大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-17T15:06:08Z) - CopilotCAD: Empowering Radiologists with Report Completion Models and Quantitative Evidence from Medical Image Foundation Models [3.8940162151291804]
本研究は,放射線技師の補助的共同操縦システムを構築するための革新的なパラダイムを紹介する。
我々は,大規模言語モデル(LLM)と医用画像解析ツールを統合する協調フレームワークを開発した。
論文 参考訳(メタデータ) (2024-04-11T01:33:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Future Artificial Intelligence tools and perspectives in medicine [1.7532045941271799]
現在、がんの限られた管理は人工知能の恩恵を受けており、主にコンピューター支援診断に関連しており、追加のリスクとコストを示す生検分析を避けている。
本稿では,臨床応用のためのAIベースの放射線治療ツールの進歩について概説する。
論文 参考訳(メタデータ) (2022-06-04T11:27:43Z) - Hierarchical Analysis of Visual COVID-19 Features from Chest Radiographs [5.832030105874915]
我々は, 放射線学的決定プロセスと整合した, 人間の解釈可能なクラス階層を用いて, 放射線学的特徴をモデル化する。
実験により、モデル故障は、ICU撮像条件と非常に相関し、特定の種類の放射線学的特徴を識別することが本質的に困難であることが示されている。
論文 参考訳(メタデータ) (2021-07-14T11:37:28Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。