A General Theory of Correct, Incorrect, and Extrinsic Equivariance
- URL: http://arxiv.org/abs/2303.04745v2
- Date: Sat, 28 Oct 2023 13:53:30 GMT
- Title: A General Theory of Correct, Incorrect, and Extrinsic Equivariance
- Authors: Dian Wang, Xupeng Zhu, Jung Yeon Park, Mingxi Jia, Guanang Su, Robert
Platt, Robin Walters
- Abstract summary: A missing piece in the equivariant learning literature is the analysis of equivariant networks when symmetry exists only partially in the domain.
In this work, we present a general theory for such a situation.
We prove error lower bounds for invariant or equivariant networks in classification or regression settings with partially incorrect symmetry.
- Score: 22.625954325866907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although equivariant machine learning has proven effective at many tasks,
success depends heavily on the assumption that the ground truth function is
symmetric over the entire domain matching the symmetry in an equivariant neural
network. A missing piece in the equivariant learning literature is the analysis
of equivariant networks when symmetry exists only partially in the domain. In
this work, we present a general theory for such a situation. We propose
pointwise definitions of correct, incorrect, and extrinsic equivariance, which
allow us to quantify continuously the degree of each type of equivariance a
function displays. We then study the impact of various degrees of incorrect or
extrinsic symmetry on model error. We prove error lower bounds for invariant or
equivariant networks in classification or regression settings with partially
incorrect symmetry. We also analyze the potentially harmful effects of
extrinsic equivariance. Experiments validate these results in three different
environments.
Related papers
- Approximate Equivariance in Reinforcement Learning [35.04248486334824]
Equivariant neural networks have shown great success in reinforcement learning.
In many problems, only approximate symmetry is present, which makes imposing exact symmetry inappropriate.
We develop approximately equivariant algorithms in reinforcement learning.
arXiv Detail & Related papers (2024-11-06T19:44:46Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Almost Equivariance via Lie Algebra Convolutions [0.0]
We provide a definition of almost equivariance and give a practical method for encoding it in models.
Specifically, we define Lie algebra convolutions and demonstrate that they offer several benefits over Lie group convolutions.
We prove two existence theorems, one showing the existence of almost isometries within bounded distance of isometries of a manifold, and another showing the converse for Hilbert spaces.
arXiv Detail & Related papers (2023-10-19T21:31:11Z) - It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep
Models [51.66015254740692]
We show that for an ensemble of deep learning based classification models, bias and variance are emphaligned at a sample level.
We study this phenomenon from two theoretical perspectives: calibration and neural collapse.
arXiv Detail & Related papers (2023-10-13T17:06:34Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
We study the equivariance properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architectures.
We find that many violations of equivariance can be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities.
For example, transformers can be more equivariant than convolutional neural networks after training.
arXiv Detail & Related papers (2022-10-06T15:20:55Z) - Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift [91.38796390449504]
Combinations of domains and labels are not observed during training but appear in the test environment.
We provide a unique formulation of the combination shift problem based on the concepts of homomorphism, equivariance, and a refined definition of disentanglement.
arXiv Detail & Related papers (2022-08-03T12:31:31Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Relaxing Equivariance Constraints with Non-stationary Continuous Filters [20.74154804898478]
The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
arXiv Detail & Related papers (2022-04-14T18:08:36Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
Many machine learning applications involve learning representations that achieve two competing goals.
Minimax game-theoretic formulation represents a fundamental tradeoff between accuracy and invariance.
We provide an information-theoretic analysis of this general and important problem under both classification and regression settings.
arXiv Detail & Related papers (2020-12-19T15:24:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.