Enabling Non-Linear Quantum Operations through Variational Quantum
Splines
- URL: http://arxiv.org/abs/2303.04788v3
- Date: Mon, 4 Dec 2023 15:40:19 GMT
- Title: Enabling Non-Linear Quantum Operations through Variational Quantum
Splines
- Authors: Matteo Antonio Inajetovic, Filippo Orazi, Antonio Macaluso, Stefano
Lodi, Claudio Sartori
- Abstract summary: We propose a novel method for approximating non-linear quantum activation functions using hybrid quantum-classical computation.
The proposed method relies on a flexible problem representation for non-linear approximation and it is suitable to be embedded in existing quantum neural network architectures.
- Score: 1.3874486202578669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The postulates of quantum mechanics impose only unitary transformations on
quantum states, which is a severe limitation for quantum machine learning
algorithms. Quantum Splines (QSplines) have recently been proposed to
approximate quantum activation functions to introduce non-linearity in quantum
algorithms. However, QSplines make use of the HHL as a subroutine and require a
fault-tolerant quantum computer to be correctly implemented. This work proposes
the Generalised Hybrid Quantum Splines (GHQSplines), a novel method for
approximating non-linear quantum activation functions using hybrid
quantum-classical computation. The GHQSplines overcome the highly demanding
requirements of the original QSplines in terms of quantum hardware and can be
implemented using near-term quantum computers. Furthermore, the proposed method
relies on a flexible problem representation for non-linear approximation and it
is suitable to be embedded in existing quantum neural network architectures. In
addition, we provide a practical implementation of the GHQSplines using
Pennylane and show that our model outperforms the original QSplines in terms of
quality of fitting.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
Quantum machine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm in the noisy intermediate-scale quantum (NISQ) era.
Recent researches reveal that the data reuploading, which repeatedly encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model.
We propose quantum machine learning with Kerrnon Parametric Hilberts (KPOs) as another promising quantum computing device.
arXiv Detail & Related papers (2023-05-01T07:01:45Z) - Parameterized Quantum Circuits with Quantum Kernels for Machine
Learning: A Hybrid Quantum-Classical Approach [0.8722210937404288]
Kernel ized Quantum Circuits (PQCs) are generally used in the hybrid approach to Quantum Machine Learning (QML)
We discuss some important aspects of PQCs with quantum kernels including PQCs, quantum kernels, quantum kernels with quantum advantage, and the trainability of quantum kernels.
arXiv Detail & Related papers (2022-09-28T22:14:41Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Variational Quantum-Neural Hybrid Error Mitigation [6.555128824546528]
Quantum error mitigation (QEM) is crucial for obtaining reliable results on quantum computers.
We show how variational quantum-neural hybrid eigensolver (VQNHE) algorithm is inherently noise resilient with a unique QEM capacity.
arXiv Detail & Related papers (2021-12-20T08:07:58Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.