論文の概要: Invertible Kernel PCA with Random Fourier Features
- arxiv url: http://arxiv.org/abs/2303.05043v1
- Date: Thu, 9 Mar 2023 05:42:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 16:02:32.269603
- Title: Invertible Kernel PCA with Random Fourier Features
- Title(参考訳): ランダムフーリエ特徴を持つ可逆カーネルPCA
- Authors: Daniel Gedon, Ant\^oni H. Ribeiro, Niklas Wahlstr\"om, Thomas B.
Sch\"on
- Abstract要約: カーネル主成分分析(kPCA)は、非線形変換後の低次元データ表現を構築するために広く研究されている手法である。
圧縮工程から自然に復元を行う方法を提案する。
ikPCA は kPCA と同様の動作を示し,タスクの復調を指導的に行うことで,強力な代替手段であることを示す。
- 参考スコア(独自算出の注目度): 0.22940141855172028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kernel principal component analysis (kPCA) is a widely studied method to
construct a low-dimensional data representation after a nonlinear
transformation. The prevailing method to reconstruct the original input signal
from kPCA -- an important task for denoising -- requires us to solve a
supervised learning problem. In this paper, we present an alternative method
where the reconstruction follows naturally from the compression step. We first
approximate the kernel with random Fourier features. Then, we exploit the fact
that the nonlinear transformation is invertible in a certain subdomain. Hence,
the name \emph{invertible kernel PCA (ikPCA)}. We experiment with different
data modalities and show that ikPCA performs similarly to kPCA with supervised
reconstruction on denoising tasks, making it a strong alternative.
- Abstract(参考訳): カーネル主成分分析(kPCA)は、非線形変換後の低次元データ表現を構築するために広く研究されている手法である。
そこで本研究では,kPCAからの入力信号を復調するためには,教師付き学習問題を解く必要がある。
本稿では,圧縮ステップから自然に復元を行う代替手法を提案する。
まずカーネルをランダムなフーリエ特徴で近似する。
そして、ある部分領域において非線形変換が可逆であるという事実を利用する。
したがって、名前は \emph{invertible kernel PCA (ikPCA)} である。
我々は、異なるデータモダリティを実験し、ikPCAがkPCAと同じようなタスクの教師付き再構成を行うことを示す。
関連論文リスト
- Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Contrastive Learning Can Find An Optimal Basis For Approximately
View-Invariant Functions [18.440569330385323]
本稿では,複数のコントラスト学習手法を,固定正対カーネルを近似した学習カーネル関数として再解釈できることを示す。
このカーネルとPCAを組み合わせることで得られる単純な表現は、線形予測器の最悪の近似誤差を確実に最小化する。
論文 参考訳(メタデータ) (2022-10-04T20:02:52Z) - PCA-Boosted Autoencoders for Nonlinear Dimensionality Reduction in Low
Data Regimes [0.2925461470287228]
そこで本研究では,PCAを利用して少ない非線形データによく対応できるオートエンコーダを提案する。
まず, データの非線形性とサイズが提案手法の性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2022-05-23T23:46:52Z) - Stochastic and Private Nonconvex Outlier-Robust PCA [11.688030627514532]
外乱PCAは、外乱で破損したデータセットから下層の低次元線形部分空間を求める。
提案手法は,測地線降下と新しい収束解析を含む手法を含むことを示す。
メインの応用法は、アウトリアロバストPCAのための効果的にプライベートなアルゴリズムである。
論文 参考訳(メタデータ) (2022-03-17T12:00:47Z) - Neural Fields as Learnable Kernels for 3D Reconstruction [101.54431372685018]
本稿では,学習したカーネルリッジの回帰に基づいて,暗黙の3次元形状を再構成する手法を提案する。
本手法は,3次元オブジェクトと大画面をスパース指向の点から再構成する際の最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-11-26T18:59:04Z) - Kernel Identification Through Transformers [54.3795894579111]
カーネル選択はガウス過程(GP)モデルの性能決定において中心的な役割を果たす。
この研究は、高次元GP回帰モデルのためのカスタムカーネル関数を構築するという課題に対処する。
KITT: Kernel Identification through Transformersを提案する。
論文 参考訳(メタデータ) (2021-06-15T14:32:38Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning [29.221457769884648]
本研究では,非定常カーネルを学習するための明示的,入力に依存した,計測値のワーピングの一般的な形式を提案する。
提案した学習アルゴリズムは、標準定常カーネルの滑らかさを制御する条件付きガウス測度として入力をワープする。
我々は,小・大規模データ体制の学習問題において,ワーピング関数のパラメータ数に顕著な効率性を示す。
論文 参考訳(メタデータ) (2020-10-09T01:10:08Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z) - Nonparametric Bayesian volatility learning under microstructure noise [2.812395851874055]
市場マイクロ構造騒音下でのボラティリティ学習の課題について検討する。
具体的には、微分方程式からノイズの多い離散時間観測を考察する。
方程式の拡散係数を学習するための新しい計算法を開発した。
論文 参考訳(メタデータ) (2018-05-15T07:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。