Retinal Image Segmentation with Small Datasets
- URL: http://arxiv.org/abs/2303.05110v1
- Date: Thu, 9 Mar 2023 08:32:14 GMT
- Title: Retinal Image Segmentation with Small Datasets
- Authors: Nchongmaje Ndipenoch, Alina Miron, Zidong Wang and Yongmin Li
- Abstract summary: Many eye diseases like Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD) and Glaucoma manifest in the retina, can cause irreversible blindness or severely impair the central version.
The Optical Coherence Tomography ( OCT), a 3D scan of the retina, can be used to diagnose and monitor changes in the retinal anatomy.
Many Deep Learning (DL) methods have shared the success of developing an automated tool to monitor pathological changes in the retina.
- Score: 25.095695898777656
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many eye diseases like Diabetic Macular Edema (DME), Age-related Macular
Degeneration (AMD), and Glaucoma manifest in the retina, can cause irreversible
blindness or severely impair the central version. The Optical Coherence
Tomography (OCT), a 3D scan of the retina with high qualitative information
about the retinal morphology, can be used to diagnose and monitor changes in
the retinal anatomy. Many Deep Learning (DL) methods have shared the success of
developing an automated tool to monitor pathological changes in the retina.
However, the success of these methods depend mainly on large datasets. To
address the challenge from very small and limited datasets, we proposed a DL
architecture termed CoNet (Coherent Network) for joint segmentation of layers
and fluids in retinal OCT images on very small datasets (less than a hundred
training samples). The proposed model was evaluated on the publicly available
Duke DME dataset consisting of 110 B-Scans from 10 patients suffering from DME.
Experimental results show that the proposed model outperformed both the human
experts' annotation and the current state-of-the-art architectures by a clear
margin with a mean Dice Score of 88% when trained on 55 images without any data
augmentation.
Related papers
- LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Learning from few examples: Classifying sex from retinal images via deep
learning [3.9146761527401424]
We showcase results for the performance of DL on small datasets to classify patient sex from fundus images.
Our models, developed using approximately 2500 fundus images, achieved test AUC scores of up to 0.72.
This corresponds to a mere 25% decrease in performance despite a nearly 1000-fold decrease in the dataset size.
arXiv Detail & Related papers (2022-07-20T02:47:29Z) - SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors [4.2663199451998475]
We introduce a semi-supervised paradigm into the retinal layer segmentation task.
In particular, a novel fully differentiable approach is used for converting surface position regression into a pixel-wise structured segmentation.
In parallel, we propose a set of anatomical priors to improve network training when a limited amount of labeled data is available.
arXiv Detail & Related papers (2022-07-01T14:30:59Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Anomaly Detection in Retinal Images using Multi-Scale Deep Feature
Sparse Coding [30.097208168480826]
We introduce an unsupervised approach for detecting anomalies in retinal images to overcome this issue.
We achieve relative AUC score improvement of 7.8%, 6.7% and 12.1% over state-of-the-art SPADE on Eye-Q, IDRiD and OCTID datasets respectively.
arXiv Detail & Related papers (2022-01-27T13:36:22Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
"Multiscale-Decoder Network (MED-Net)" provides pixel-wise labeling into classes of patterns in a quantitative manner.
We trained and tested our model on non-overlapping partitions of 117 reflectance confocal microscopy (RCM) mosaics of melanocytic lesions.
arXiv Detail & Related papers (2020-01-03T22:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.