論文の概要: Synthetic Pseudo Anomalies for Unsupervised Video Anomaly Detection: A
Simple yet Efficient Framework based on Masked Autoencoder
- arxiv url: http://arxiv.org/abs/2303.05112v1
- Date: Thu, 9 Mar 2023 08:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 15:35:46.595798
- Title: Synthetic Pseudo Anomalies for Unsupervised Video Anomaly Detection: A
Simple yet Efficient Framework based on Masked Autoencoder
- Title(参考訳): 非教師なしビデオ異常検出のための合成擬似異常:マスク付きオートエンコーダに基づく単純かつ効率的なフレームワーク
- Authors: Xiangyu Huang, Caidan Zhao, Chenxing Gao, Lvdong Chen and Zhiqiang Wu
- Abstract要約: 本稿では,ビデオ異常検出のための簡易かつ効率的なフレームワークを提案する。
擬似異常サンプルは、余分なデータ処理をせずにランダムマスクトークンを埋め込み、正規データのみから合成する。
また、正規性とそれに対応する擬似異常データから正規知識をよりよく学習するよう、AEsに促す正規性整合性訓練戦略を提案する。
- 参考スコア(独自算出の注目度): 1.9511777443446219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the limited availability of anomalous samples for training, video
anomaly detection is commonly viewed as a one-class classification problem.
Many prevalent methods investigate the reconstruction difference produced by
AutoEncoders (AEs) under the assumption that the AEs would reconstruct the
normal data well while reconstructing anomalies poorly. However, even with only
normal data training, the AEs often reconstruct anomalies well, which depletes
their anomaly detection performance. To alleviate this issue, we propose a
simple yet efficient framework for video anomaly detection. The pseudo anomaly
samples are introduced, which are synthesized from only normal data by
embedding random mask tokens without extra data processing. We also propose a
normalcy consistency training strategy that encourages the AEs to better learn
the regular knowledge from normal and corresponding pseudo anomaly data. This
way, the AEs learn more distinct reconstruction boundaries between normal and
abnormal data, resulting in superior anomaly discrimination capability.
Experimental results demonstrate the effectiveness of the proposed method.
- Abstract(参考訳): トレーニング用の異常サンプルが限られているため、ビデオ異常検出は1クラス分類問題として一般的に見なされる。
オートエンコーダ (AEs) が生成する再構成差を, AEs が異常を再現しながら正常なデータをよく再構成する,という仮定の下で検討する。
しかし、通常のデータトレーニングだけでは、AEは異常をよく再構築し、異常検出性能を低下させる。
この問題を軽減するため,映像異常検出のための簡易かつ効率的なフレームワークを提案する。
擬似異常サンプルを導入し、余分なデータ処理をせずにランダムマスクトークンを埋め込み、通常のデータのみから合成する。
また,正規性とそれに対応する疑似異常データから正規知識をよりよく学習することを促す正規性一貫性トレーニング戦略を提案する。
このようにして、aesは正常データと異常データの間のより明確な再構成境界を学習し、より優れた異常識別能力が得られる。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - Exploiting Autoencoder's Weakness to Generate Pseudo Anomalies [17.342474659784823]
異常検出の典型的なアプローチは、通常のデータのパターンや表現を学習するためにのみ、通常のデータでオートエンコーダ(AE)を訓練することである。
本稿では,AEの弱点,すなわち異常の再構築をうまく活用して,学習適応雑音から擬似異常を生成することを提案する。
論文 参考訳(メタデータ) (2024-05-09T16:22:24Z) - Constricting Normal Latent Space for Anomaly Detection with Normal-only Training Data [11.237938539765825]
オートエンコーダ(AE)は通常、データを再構築するために訓練される。
テスト期間中、AEは実際の異常を使用して訓練されていないため、異常データを十分に再構成することが期待されている。
我々は,新しい潜在的拘束損失を導入することで,AEの再建能力を制限することを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:22:15Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection [16.436293069942312]
オートエンコーダ(AE)は、しばしば異常検出性能を低下させる異常の再構築を開始する。
本研究では,正規データのみを用いて擬似異常を発生させる時間的擬似異常シンセサイザーを提案する。
AEは、通常のデータでこの損失を最小化しつつ、擬似異常の復元損失を最大化するように訓練される。
論文 参考訳(メタデータ) (2021-10-19T07:08:44Z) - Learning Not to Reconstruct Anomalies [14.632592282260363]
オートエンコーダ(AE)は、通常のデータのみからなるトレーニングセットで入力を再構築するために訓練される。
AEは、異常なデータを十分に再構築しつつ、正常なデータを適切に再構築することが期待されている。
本稿では,入力によらず,通常のデータのみを再構築する目的で,AEを訓練するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-19T05:22:38Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Reconstruct Anomaly to Normal: Adversarial Learned and Latent
Vector-constrained Autoencoder for Time-series Anomaly Detection [3.727524403726822]
時系列における異常検出は広く研究され、重要な実用的応用がなされている。
近年、異常検出アルゴリズムは、主にディープラーニング生成モデルに基づいており、再構成誤差を用いて異常を検出する。
本稿では,正規化に対する再構成異常の考え方に基づくRANを提案し,それを教師なし時系列異常検出に適用する。
論文 参考訳(メタデータ) (2020-10-14T07:10:55Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。