論文の概要: Constricting Normal Latent Space for Anomaly Detection with Normal-only Training Data
- arxiv url: http://arxiv.org/abs/2403.16270v1
- Date: Sun, 24 Mar 2024 19:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:46:40.331709
- Title: Constricting Normal Latent Space for Anomaly Detection with Normal-only Training Data
- Title(参考訳): 正規学習データを用いた異常検出のための制限付き正規潜時空間
- Authors: Marcella Astrid, Muhammad Zaigham Zaheer, Seung-Ik Lee,
- Abstract要約: オートエンコーダ(AE)は通常、データを再構築するために訓練される。
テスト期間中、AEは実際の異常を使用して訓練されていないため、異常データを十分に再構成することが期待されている。
我々は,新しい潜在的拘束損失を導入することで,AEの再建能力を制限することを提案する。
- 参考スコア(独自算出の注目度): 11.237938539765825
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In order to devise an anomaly detection model using only normal training data, an autoencoder (AE) is typically trained to reconstruct the data. As a result, the AE can extract normal representations in its latent space. During test time, since AE is not trained using real anomalies, it is expected to poorly reconstruct the anomalous data. However, several researchers have observed that it is not the case. In this work, we propose to limit the reconstruction capability of AE by introducing a novel latent constriction loss, which is added to the existing reconstruction loss. By using our method, no extra computational cost is added to the AE during test time. Evaluations using three video anomaly detection benchmark datasets, i.e., Ped2, Avenue, and ShanghaiTech, demonstrate the effectiveness of our method in limiting the reconstruction capability of AE, which leads to a better anomaly detection model.
- Abstract(参考訳): 通常のトレーニングデータのみを用いて異常検出モデルを考案するために、オートエンコーダ(AE)が典型的にデータ再構築のために訓練される。
その結果、AEはその潜在空間における正規表現を抽出することができる。
テスト期間中、AEは実際の異常を使用して訓練されていないため、異常データを十分に再構成することが期待されている。
しかし、いくつかの研究者は、それがそうではないことを発見している。
本研究では,既存の再建損失に付加される新しい潜在的拘束損失を導入することで,AEの再建能力を制限することを提案する。
本手法を用いることで,テスト時間中に余分な計算コストをAEに追加することができない。
Ped2, Avenue, ShanghaiTech の3つのビデオ異常検出ベンチマークデータセットを用いて,AE の再構成能力を制限する手法の有効性を実証し,より優れた異常検出モデルが得られた。
関連論文リスト
- Exploiting Autoencoder's Weakness to Generate Pseudo Anomalies [17.342474659784823]
異常検出の典型的なアプローチは、通常のデータのパターンや表現を学習するためにのみ、通常のデータでオートエンコーダ(AE)を訓練することである。
本稿では,AEの弱点,すなわち異常の再構築をうまく活用して,学習適応雑音から擬似異常を生成することを提案する。
論文 参考訳(メタデータ) (2024-05-09T16:22:24Z) - DMAD: Dual Memory Bank for Real-World Anomaly Detection [90.97573828481832]
我々は、DMAD(Anomaly Detection)のための表現学習を強化したDual Memory Bankという新しいフレームワークを提案する。
DMADはデュアルメモリバンクを用いて特徴距離を計算し、正常パターンと異常パターンの間の特徴注意を計算している。
DMADをMVTec-ADおよびVisAデータセット上で評価した。
論文 参考訳(メタデータ) (2024-03-19T02:16:32Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Synthetic Pseudo Anomalies for Unsupervised Video Anomaly Detection: A
Simple yet Efficient Framework based on Masked Autoencoder [1.9511777443446219]
本稿では,ビデオ異常検出のための簡易かつ効率的なフレームワークを提案する。
擬似異常サンプルは、余分なデータ処理をせずにランダムマスクトークンを埋め込み、正規データのみから合成する。
また、正規性とそれに対応する擬似異常データから正規知識をよりよく学習するよう、AEsに促す正規性整合性訓練戦略を提案する。
論文 参考訳(メタデータ) (2023-03-09T08:33:38Z) - A Subspace Projection Approach to Autoencoder-based Anomaly Detection [45.37038692092683]
Autoencoder(AE)は、入力をその出力で再構築するように訓練されたニューラルネットワークアーキテクチャである。
本稿では,新しい入力をサブスペースに投影することで,AEに基づく異常検出を行う新しいフレームワークHFR-AEを提案する。
論文 参考訳(メタデータ) (2023-02-15T13:23:09Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection [16.436293069942312]
オートエンコーダ(AE)は、しばしば異常検出性能を低下させる異常の再構築を開始する。
本研究では,正規データのみを用いて擬似異常を発生させる時間的擬似異常シンセサイザーを提案する。
AEは、通常のデータでこの損失を最小化しつつ、擬似異常の復元損失を最大化するように訓練される。
論文 参考訳(メタデータ) (2021-10-19T07:08:44Z) - Learning Not to Reconstruct Anomalies [14.632592282260363]
オートエンコーダ(AE)は、通常のデータのみからなるトレーニングセットで入力を再構築するために訓練される。
AEは、異常なデータを十分に再構築しつつ、正常なデータを適切に再構築することが期待されている。
本稿では,入力によらず,通常のデータのみを再構築する目的で,AEを訓練するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-19T05:22:38Z) - ARAE: Adversarially Robust Training of Autoencoders Improves Novelty
Detection [6.992807725367106]
オートエンコーダ(AE)は新規性検出問題にアプローチするために広く利用されている。
より意味論的に意味のある特徴を学習できる新しいAEを提案する。
よりシンプルなアーキテクチャを使用しているにもかかわらず、提案されたAEは、3つのベンチマークデータセットで最先端の競合に勝っているか、あるいは競合していることを示す。
論文 参考訳(メタデータ) (2020-03-12T09:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。