A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy
Dispatch in Virtual Power Plants under Uncertainty
- URL: http://arxiv.org/abs/2309.08642v1
- Date: Fri, 15 Sep 2023 00:04:00 GMT
- Title: A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy
Dispatch in Virtual Power Plants under Uncertainty
- Authors: Wei Jiang, Zhongkai Yi, Li Wang, Hanwei Zhang, Jihai Zhang, Fangquan
Lin, Cheng Yang
- Abstract summary: We propose a real-time uncertainty-aware energy dispatch framework, which is composed of two key elements.
The proposed framework is capable to rapidly adapt to the real-time data distribution, as well as to target on uncertainties caused by data drift, model discrepancy and environment perturbations in the control process.
The framework won the championship in CityLearn Challenge 2022, which provided an influential opportunity to investigate the potential of AI application in the energy domain.
- Score: 18.485617498705736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aggregating distributed energy resources in power systems significantly
increases uncertainties, in particular caused by the fluctuation of renewable
energy generation. This issue has driven the necessity of widely exploiting
advanced predictive control techniques under uncertainty to ensure long-term
economics and decarbonization. In this paper, we propose a real-time
uncertainty-aware energy dispatch framework, which is composed of two key
elements: (i) A hybrid forecast-and-optimize sequential task, integrating deep
learning-based forecasting and stochastic optimization, where these two stages
are connected by the uncertainty estimation at multiple temporal resolutions;
(ii) An efficient online data augmentation scheme, jointly involving model
pre-training and online fine-tuning stages. In this way, the proposed framework
is capable to rapidly adapt to the real-time data distribution, as well as to
target on uncertainties caused by data drift, model discrepancy and environment
perturbations in the control process, and finally to realize an optimal and
robust dispatch solution. The proposed framework won the championship in
CityLearn Challenge 2022, which provided an influential opportunity to
investigate the potential of AI application in the energy domain. In addition,
comprehensive experiments are conducted to interpret its effectiveness in the
real-life scenario of smart building energy management.
Related papers
- Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Short-Term Load Forecasting Using A Particle-Swarm Optimized Multi-Head
Attention-Augmented CNN-LSTM Network [0.0]
Short-term load forecasting is of paramount importance in the efficient operation and planning of power systems.
Recent strides in deep learning have shown promise in addressing this challenge.
I propose a novel solution that surmounts these obstacles.
arXiv Detail & Related papers (2023-09-07T13:06:52Z) - Real-time scheduling of renewable power systems through planning-based
reinforcement learning [13.65517429683729]
renewable energy sources have posed significant challenges to traditional power scheduling.
New developments in reinforcement learning have demonstrated the potential to solve this problem.
We are the first to propose a systematic solution based on the state-of-the-art reinforcement learning algorithm and the real power grid environment.
arXiv Detail & Related papers (2023-03-09T12:19:20Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Risk-Aware Control and Optimization for High-Renewable Power Grids [11.352041887858322]
RAMC project investigates how to move from this deterministic setting into a risk-aware framework.
This paper reviews how RAMC approaches risk-aware market clearing and presents some of its innovations in uncertainty quantification, optimization, and machine learning.
arXiv Detail & Related papers (2022-04-02T22:58:08Z) - Learning Optimization Proxies for Large-Scale Security-Constrained
Economic Dispatch [11.475805963049808]
Security-Constrained Economic Dispatch (SCED) is a fundamental optimization model for Transmission System Operators (TSO)
This paper proposes to learn an optimization proxy for SCED, i.e., a Machine Learning (ML) model that can predict an optimal solution for SCED in milliseconds.
Numerical experiments are reported on the French transmission system, and demonstrate the approach's ability to produce, within a time frame that is compatible with real-time operations.
arXiv Detail & Related papers (2021-12-27T00:44:06Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.