Universal Stochastic Equations of Monitored Quantum Dynamics
- URL: http://arxiv.org/abs/2408.16974v1
- Date: Fri, 30 Aug 2024 02:24:54 GMT
- Title: Universal Stochastic Equations of Monitored Quantum Dynamics
- Authors: Zhenyu Xiao, Tomi Ohtsuki, Kohei Kawabata,
- Abstract summary: We derive the universal Fokker-Planck equations that govern the Gaussian time evolution of entire density-matrix spectra.
We identify the universal fluctuations of entropy in the chaotic regime, serving as a non-unitary counterpart of the universal conductance fluctuations in mesoscopic electronic transport phenomena.
- Score: 4.794899293121226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the monitored quantum dynamics of Gaussian mixed states and derive the universal Fokker-Planck equations that govern the stochastic time evolution of entire density-matrix spectra, obtaining their exact solutions. From these equations, we reveal an even-odd effect in purification dynamics: whereas entropy exhibits exponential decay for an even number $N$ of complex fermions, algebraic decay with divergent purification time occurs for odd $N$ as a manifestation of dynamical criticality. Additionally, we identify the universal fluctuations of entropy in the chaotic regime, serving as a non-unitary counterpart of the universal conductance fluctuations in mesoscopic electronic transport phenomena. Furthermore, we elucidate and classify the universality classes of non-unitary quantum dynamics based on fundamental symmetry. We also validate the universality of these analytical results through extensive numerical simulations across different types of models.
Related papers
- Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Universal correlations in chaotic many-body quantum states: Fock-space formulation of Berrys random wave model [0.0]
We show that the randomness of chaotic eigenstates in interacting quantum systems hides subtle correlations imposed by their finite energy per particle.
These correlations are revealed when Berrys approach for chaotic eigenfunctions in single-particle systems is lifted into many-body space.
We then identify the universality of both the cross-correlations and the Gaussian distribution of expansion coefficients as the signatures of chaotic eigenstates.
arXiv Detail & Related papers (2024-03-15T09:26:17Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Classifying the universal coarsening dynamics of a quenched
ferromagnetic condensate [0.052777567033180435]
Scale universality and self-similarity in physics provide a unified framework to classify phases of matter and dynamical properties of near-equilibrium systems.
Here, we report on the first classification of universal coarsening dynamics in a ferromagnetic spinor gas.
Our results represent a paradigmatic example of categorizing far-from-equilibrium dynamics in quantum many-body systems.
arXiv Detail & Related papers (2023-03-09T13:08:38Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Non-Equilibrium Many-Body Dynamics Following A Quantum Quench [0.40357531559576965]
We study analytically and numerically the non-equilibrium dynamics of an isolated interacting many-body quantum system following a random quench.
We obtain a generic formulation for describing relaxation dynamics of survival probabilities as a function of rank of interactions.
arXiv Detail & Related papers (2021-11-17T18:55:11Z) - Universal equilibration dynamics of the Sachdev-Ye-Kitaev model [11.353329565587574]
We present a universal feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian.
We reveal that the disorder-averaged evolution of few-body observables, including the quantum Fisher information, exhibit within numerical resolution a universal equilibration process.
This framework extracts the disorder-averaged dynamics of a many-body system as an effective dissipative evolution.
arXiv Detail & Related papers (2021-08-03T19:43:58Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.