論文の概要: Practical Statistical Considerations for the Clinical Validation of
AI/ML-enabled Medical Diagnostic Devices
- arxiv url: http://arxiv.org/abs/2303.05399v1
- Date: Thu, 2 Mar 2023 19:27:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-12 03:32:07.851643
- Title: Practical Statistical Considerations for the Clinical Validation of
AI/ML-enabled Medical Diagnostic Devices
- Title(参考訳): AI/ML医療診断装置の臨床的妥当性に関する統計的考察
- Authors: Feiming Chen, Hong Laura Lu, Arianna Simonetti
- Abstract要約: 本稿では,AI/ML対応医療診断装置の評価における統計的側面について概説する。
また、AI/ML対応医療機器の臨床的検証における様々な統計的課題に対処する上で、関連する学術的基準と注意が必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) and Machine-Learning (ML) models have been
increasingly used in medical products, such as medical device software. General
considerations on the statistical aspects for the evaluation of AI/ML-enabled
medical diagnostic devices are discussed in this paper. We also provide
relevant academic references and note good practices in addressing various
statistical challenges in the clinical validation of AI/ML-enabled medical
devices in the context of their intended use.
- Abstract(参考訳): 人工知能(AI)や機械学習(ML)モデルは、医療機器ソフトウェアなどの医療製品にますます使われている。
本稿では,AI/ML対応医療診断装置の評価における統計的側面について概説する。
また,AI/ML対応医療機器の臨床検証において,意図した使用の文脈において,様々な統計的課題に対処する上で,関連する学術的基準と注意が必要である。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBenchは、14のエキスパートによるコア臨床シナリオを備えた総合的なベンチマークである。
このベンチマークの信頼性はいくつかの点で確認されている。
論文 参考訳(メタデータ) (2024-10-04T15:15:36Z) - COGNET-MD, an evaluation framework and dataset for Large Language Model benchmarks in the medical domain [1.6752458252726457]
大規模言語モデル(LLM)は最先端の人工知能(AI)技術である。
医療領域認知ネットワーク評価ツールキット(COGNET-MD)について概説する。
医用テキストの解釈におけるLCMの能力を評価するのが困難であるスコアフレームを提案する。
論文 参考訳(メタデータ) (2024-05-17T16:31:56Z) - Artificial Intelligence in Bone Metastasis Analysis: Current Advancements, Opportunities and Challenges [15.765725731972983]
本稿では,人工知能を用いた骨転移解析の現状と進歩を概説する。
ML技術は、BM分析において有望な性能を達成することができ、臨床効率を改善し、時間とコストの制限に対処する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-04-30T14:49:03Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
本研究では、時系列医療指標における心拍データの伝達を改善するための機械学習アルゴリズムの能力について検討する。
検討中の要因は、アルゴリズムの利用、対象とする疾患の種類、採用されるデータの種類、応用、評価指標などである。
論文 参考訳(メタデータ) (2023-10-25T20:28:22Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Benchmark datasets driving artificial intelligence development fail to
capture the needs of medical professionals [4.799783526620609]
臨床およびバイオメディカル自然言語処理(NLP)の幅広い領域に関するデータセットとベンチマークのカタログを公開した。
450のNLPデータセットが手動で体系化され、豊富なメタデータで注釈付けされた。
我々の分析は、AIベンチマークの直接臨床関連性は乏しく、臨床医が対応したい仕事のほとんどをカバーできないことを示唆している。
論文 参考訳(メタデータ) (2022-01-18T15:05:28Z) - Automated Coding of Under-Studied Medical Concept Domains: Linking
Physical Activity Reports to the International Classification of Functioning,
Disability, and Health [22.196642357767338]
医療概念の多くの領域は、医学テキストの効果的なコーディングを支援するための、十分に発達した用語を欠いている。
本稿では,未研究の医療情報の自動符号化のための自然言語処理(NLP)技術を開発するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-27T20:02:59Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。