論文の概要: Automated Coding of Under-Studied Medical Concept Domains: Linking
Physical Activity Reports to the International Classification of Functioning,
Disability, and Health
- arxiv url: http://arxiv.org/abs/2011.13978v2
- Date: Wed, 10 Mar 2021 18:05:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 01:28:46.175219
- Title: Automated Coding of Under-Studied Medical Concept Domains: Linking
Physical Activity Reports to the International Classification of Functioning,
Disability, and Health
- Title(参考訳): 医療概念ドメインの自動符号化:身体活動報告を機能・障害・健康の国際分類にリンクする
- Authors: Denis Newman-Griffis and Eric Fosler-Lussier
- Abstract要約: 医療概念の多くの領域は、医学テキストの効果的なコーディングを支援するための、十分に発達した用語を欠いている。
本稿では,未研究の医療情報の自動符号化のための自然言語処理(NLP)技術を開発するためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 22.196642357767338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Linking clinical narratives to standardized vocabularies and coding systems
is a key component of unlocking the information in medical text for analysis.
However, many domains of medical concepts lack well-developed terminologies
that can support effective coding of medical text. We present a framework for
developing natural language processing (NLP) technologies for automated coding
of under-studied types of medical information, and demonstrate its
applicability via a case study on physical mobility function. Mobility is a
component of many health measures, from post-acute care and surgical outcomes
to chronic frailty and disability, and is coded in the International
Classification of Functioning, Disability, and Health (ICF). However, mobility
and other types of functional activity remain under-studied in medical
informatics, and neither the ICF nor commonly-used medical terminologies
capture functional status terminology in practice. We investigated two
data-driven paradigms, classification and candidate selection, to link
narrative observations of mobility to standardized ICF codes, using a dataset
of clinical narratives from physical therapy encounters. Recent advances in
language modeling and word embedding were used as features for established
machine learning models and a novel deep learning approach, achieving a macro
F-1 score of 84% on linking mobility activity reports to ICF codes. Both
classification and candidate selection approaches present distinct strengths
for automated coding in under-studied domains, and we highlight that the
combination of (i) a small annotated data set; (ii) expert definitions of codes
of interest; and (iii) a representative text corpus is sufficient to produce
high-performing automated coding systems. This study has implications for the
ongoing growth of NLP tools for a variety of specialized applications in
clinical care and research.
- Abstract(参考訳): 臨床的ナラティブと標準化された語彙とコーディングシステムとのリンクは、分析のために医療用テキストの情報をアンロックする重要なコンポーネントである。
しかし、医療概念の多くの領域では、医学テキストの効果的なコーディングを支援するための用語が発達していない。
本稿では,医学情報の自動符号化のための自然言語処理(NLP)技術を開発するためのフレームワークについて述べる。
モビリティは、治療後の治療や手術の成果から慢性的な衰弱や障害に至るまで、多くの健康対策の構成要素であり、国際機能・障害・健康分類(icf)に規定されている。
しかし、移動性やその他の機能的活動は医学情報学において未研究のままであり、icfも一般的に使われる医学用語も実際には機能的ステータス用語を捉えていない。
データ駆動型パラダイム(分類と候補選択)を2つ検討し、理学療法の遭遇からの臨床物語のデータセットを用いて、モビリティの物語観察を標準化されたicfコードに結びつけた。
言語モデリングと単語埋め込みの最近の進歩は、確立された機械学習モデルと新しいディープラーニングアプローチの特徴として使われ、ICFコードにモビリティアクティビティレポートをリンクするマクロF-1スコアが84%に達した。
分類と候補選択の両方のアプローチは、未熟な領域における自動コーディングの異なる強みを示し、それらの組み合わせが強調する。
(i)小さな注釈付きデータセット
(ii)利害関係規定の専門的定義,及び
(iii)代表的なテキストコーパスは、高いパフォーマンスの自動化コーディングシステムを作成するのに十分である。
本研究は,NLPツールのさらなる発展に寄与し,臨床医療・研究における様々な専門的応用に寄与する。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Efficient Biomedical Entity Linking: Clinical Text Standardization with Low-Resource Techniques [0.0]
複数の用語は、臨床エンティティと呼ばれることができる同じコア概念を参照することができる。
UMLS(Unified Medical Language System)のようなオントロジーは、何百万もの臨床エンティティを格納するために開発・維持されている。
そこで本稿では,エンティティの曖昧さを解消するために,コンテキストベースとコンテキストレスの省力化手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T01:14:33Z) - UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for
Biomedical Entity Recognition [4.865221751784403]
この研究は、UMLSからテキストシーケンスを抽出することにより、バイオメディカルトランスフォーマーエンコーダLMの言語表現を強化するためのデータ中心パラダイムに寄与する。
予め訓練したLMの拡張およびスクラッチからのトレーニングによる実験の結果から,複数の生物医学的,臨床的な名前付きエンティティ認識(NER)タスクにおける下流性能の向上が示された。
論文 参考訳(メタデータ) (2023-07-20T18:08:34Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Classifying Unstructured Clinical Notes via Automatic Weak Supervision [17.45660355026785]
クラスラベル記述のみから学習する、一般的な弱教師付きテキスト分類フレームワークを導入する。
我々は、事前訓練された言語モデルとデータプログラミングフレームワークに格納された言語ドメインの知識を活用して、テキストにコードラベルを割り当てる。
論文 参考訳(メタデータ) (2022-06-24T05:55:49Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Does the Magic of BERT Apply to Medical Code Assignment? A Quantitative
Study [2.871614744079523]
事前訓練されたモデルが、さらなるアーキテクチャエンジニアリングなしで医療コード予測に有用かどうかは明らかではない。
本稿では,単語間のインタラクションをキャプチャし,ラベル情報を活用する階層的な微調整アーキテクチャを提案する。
現在の傾向とは対照的に、我々は慎重に訓練された古典的なCNNは、頻繁なコードでMIMIC-IIIサブセット上の注意ベースのモデルを上回ることを実証します。
論文 参考訳(メタデータ) (2021-03-11T07:23:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
事前学習プロセス中にドメイン知識を統合するコンテキスト埋め込みモデルであるUmlsBERTを紹介する。
これらの2つの戦略を適用することで、UmlsBERTは、臨床領域の知識を単語埋め込みにエンコードし、既存のドメイン固有モデルより優れている。
論文 参考訳(メタデータ) (2020-10-20T15:56:31Z) - Data Mining in Clinical Trial Text: Transformers for Classification and
Question Answering Tasks [2.127049691404299]
本研究は,医学的テキストに基づくエビデンス合成に自然言語処理の進歩を適用した。
主な焦点は、Population、Intervention、Comparator、Outcome(PICO)フレームワークを通じて特徴づけられる情報である。
トランスフォーマーに基づく最近のニューラルネットワークアーキテクチャは、トランスファーラーニングの能力を示し、下流の自然言語処理タスクのパフォーマンスが向上している。
論文 参考訳(メタデータ) (2020-01-30T11:45:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。