論文の概要: On the Soundness of XAI in Prognostics and Health Management (PHM)
- arxiv url: http://arxiv.org/abs/2303.05517v1
- Date: Thu, 9 Mar 2023 13:27:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 17:03:19.759131
- Title: On the Soundness of XAI in Prognostics and Health Management (PHM)
- Title(参考訳): 診断・健康管理(PHM)におけるXAIの健全性について
- Authors: David Sol\'is-Mart\'in, Juan Gal\'an-P\'aez and Joaqu\'in
Borrego-D\'iaz
- Abstract要約: 本研究は,予測保守のための時系列回帰モデルに適用された多くのXAI手法について,批判的かつ比較的な改訂を行った。
本研究の目的は,時系列分類に比べて研究の少ない時系列回帰におけるXAI手法の探索である。
実験で使用されたモデルは、航空機のエンジンの残留実用寿命を予測するために訓練されたDCNNである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of Predictive Maintenance, within the field of Prognostics and Health
Management (PHM), is to identify and anticipate potential issues in the
equipment before these become critical. The main challenge to be addressed is
to assess the amount of time a piece of equipment will function effectively
before it fails, which is known as Remaining Useful Life (RUL). Deep Learning
(DL) models, such as Deep Convolutional Neural Networks (DCNN) and Long
Short-Term Memory (LSTM) networks, have been widely adopted to address the
task, with great success. However, it is well known that this kind of black box
models are opaque decision systems, and it may be hard to explain its outputs
to stakeholders (experts in the industrial equipment). Due to the large number
of parameters that determine the behavior of these complex models,
understanding the reasoning behind the predictions is challenging. This work
presents a critical and comparative revision on a number of XAI methods applied
on time series regression model for PM. The aim is to explore XAI methods
within time series regression, which have been less studied than those for time
series classification. The model used during the experimentation is a DCNN
trained to predict the RUL of an aircraft engine. The methods are reviewed and
compared using a set of metrics that quantifies a number of desirable
properties that any XAI method should fulfill. The results show that GRAD-CAM
is the most robust method, and that the best layer is not the bottom one, as is
commonly seen within the context of Image Processing.
- Abstract(参考訳): 予防・健康管理(PHM)分野における予測保守の目的は、それらが重要になる前に機器の潜在的な問題を特定し、予測することである。
対処すべき主な課題は、機器が故障する前に効果的に機能する時間を評価することであり、これはRemaining Useful Life (RUL)として知られている。
Deep Convolutional Neural Networks (DCNN) やLong Short-Term Memory (LSTM) などのディープラーニング(DL)モデルは、この課題に対処するために広く採用されており、大きな成功を収めている。
しかし、このようなブラックボックスモデルが不透明な意思決定システムであることはよく知られており、利害関係者(産業機器の専門家)にアウトプットを説明するのは難しいかもしれない。
これらの複雑なモデルの振る舞いを決定する多くのパラメータのため、予測の背後にある推論を理解することは困難である。
本研究は,PM の時系列回帰モデルに適用された多くの XAI 手法について,批判的かつ比較的な改訂を行った。
本研究の目的は,時系列分類に比べて研究の少ない時系列回帰におけるXAI手法の探索である。
実験で使用されたモデルは、航空機エンジンのRULを予測するために訓練されたDCNNである。
メソッドはレビューされ、xaiメソッドが満たすべき多くの望ましいプロパティを定量化する一連のメトリクスを使用して比較される。
その結果, GRAD-CAMが最も堅牢な手法であり, 画像処理の文脈でよく見られるように, 最良層は最下層ではないことがわかった。
関連論文リスト
- Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
時系列データは、金融や医療など、さまざまな分野において重要である。
従来の評価基準は、時間的依存関係と潜在的な特徴の高次元性のために不足している。
Recurrent Neural (RENAL) Goodness-of-Fit testは,生成時系列モデルを評価するための新しい,統計的に厳密なフレームワークである。
論文 参考訳(メタデータ) (2024-10-17T19:32:25Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - TSEM: Temporally Weighted Spatiotemporal Explainable Neural Network for
Multivariate Time Series [0.0]
時系列深層学習におけるモデルに依存しない,モデル固有のアプローチを提案する。
TSEMは,多くの解釈可能性基準を満たすとともに,XCMよりも精度が高いことを示す。
論文 参考訳(メタデータ) (2022-05-25T18:54:25Z) - MAD: Self-Supervised Masked Anomaly Detection Task for Multivariate Time
Series [14.236092062538653]
Masked Anomaly Detection (MAD) は多変量時系列異常検出のための汎用的な自己教師型学習タスクである。
入力の一部をランダムにマスキングしてモデルをトレーニングすることで、MADは従来の左から右への次のステップ予測(NSP)タスクよりも改善される。
実験の結果,MADは従来のNSP法よりも優れた異常検出率が得られることが示された。
論文 参考訳(メタデータ) (2022-05-04T14:55:42Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - MDN-VO: Estimating Visual Odometry with Confidence [34.8860186009308]
視覚オドメトリー(VO)は、ロボット工学や自律システムを含む多くのアプリケーションで使われている。
本研究では、6-DoFのポーズを推定する深層学習に基づくVOモデルと、これらの推定に対する信頼度モデルを提案する。
本実験は,本モデルが故障事例の検出に加えて,最先端の性能を上回ることを示す。
論文 参考訳(メタデータ) (2021-12-23T19:26:04Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。