論文の概要: A pseudo-likelihood approach to community detection in weighted networks
- arxiv url: http://arxiv.org/abs/2303.05909v1
- Date: Fri, 10 Mar 2023 13:36:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 15:01:42.908811
- Title: A pseudo-likelihood approach to community detection in weighted networks
- Title(参考訳): 重み付きネットワークにおけるコミュニティ検出への擬似類似アプローチ
- Authors: Andressa Cerqueira, Elizaveta Levina
- Abstract要約: 本研究では,通常分布するエッジ重みを持つネットワークに対して,擬似的なコミュニティ推定アルゴリズムを提案する。
提案手法により得られた推定値が均質ネットワークの仮定の下で一貫したものであることを証明した。
シミュレーションネットワークとfMRIデータセットで、エッジウェイトは脳領域間の接続を表現している。
- 参考スコア(独自算出の注目度): 4.111899441919165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community structure is common in many real networks, with nodes clustered in
groups sharing the same connections patterns. While many community detection
methods have been developed for networks with binary edges, few of them are
applicable to networks with weighted edges, which are common in practice. We
propose a pseudo-likelihood community estimation algorithm derived under the
weighted stochastic block model for networks with normally distributed edge
weights, extending the pseudo-likelihood algorithm for binary networks, which
offers some of the best combinations of accuracy and computational efficiency.
We prove that the estimates obtained by the proposed method are consistent
under the assumption of homogeneous networks, a weighted analogue of the
planted partition model, and show that they work well in practice for both
homogeneous and heterogeneous networks. We illustrate the method on simulated
networks and on a fMRI dataset, where edge weights represent connectivity
between brain regions and are expected to be close to normal in distribution by
construction.
- Abstract(参考訳): コミュニティ構造は多くの実ネットワークで一般的であり、ノードは同じコネクションパターンを共有するグループにクラスタ化されている。
二つのエッジを持つネットワークに対して,多くのコミュニティ検出手法が開発されているが,実際は重み付きエッジを持つネットワークに適用できるものは少ない。
本稿では,通常分布するエッジ重みを持つネットワークに対して,重み付き確率ブロックモデルに基づく擬似様コミュニティ推定アルゴリズムを提案し,精度と計算効率の最良の組み合わせを提供するバイナリネットワークに対する擬似様コミュニティ推定アルゴリズムを拡張した。
提案手法により得られた推定値が,植込み分割モデルの重み付き類似物である均質ネットワークの仮定の下で一貫性があることを証明し,均質ネットワークと異質ネットワークの両方において実効性を示す。
本稿では, シミュレーションネットワークとfMRIデータセットを用いて, エッジウェイトは脳領域間の接続を表現し, 構成によって分布が正常に近いことが期待されている。
関連論文リスト
- A stochastic block model for community detection in attributed networks [7.128313939076842]
既存のコミュニティ検出手法は主にネットワーク構造に焦点をあてるが、ノード属性を統合する手法は主に従来のコミュニティ構造に当てられている。
本稿では,属性付きネットワークにおけるコミュニティ検出のためのノードの重心性とクラスタリング係数を統合するブロックモデルを提案する。
このモデルの性能は他の5つの比較アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-08-31T01:00:24Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Bayesian community detection for networks with covariates [16.230648949593153]
科学界でもっとも注目されているのは「コミュニティ検出」である。
共依存型ランダムパーティションを持つブロックモデルを提案する。
本モデルでは, 後部推測により, コミュニティの数を知ることができる。
論文 参考訳(メタデータ) (2022-03-04T01:58:35Z) - Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
Deep Learning [24.3370326359959]
独立に訓練された深層ニューラルネットワークのラプラス近似の重み付け和からなるガウス混合モデル後部モデルを用いて予測することを提案する。
我々は,本手法がトレーニングデータから「遠方」に過信を緩和し,標準不確実性定量化ベンチマークにおける最先端のベースラインを実証的に比較することを理論的に検証した。
論文 参考訳(メタデータ) (2021-11-05T15:52:48Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Community models for networks observed through edge nominations [6.442024233731203]
コミュニティはネットワークにおいて一般的で広く研究されている構造であり、一般的にはネットワークが完全に正しく観察されているという仮定のもとである。
問合せノードを経由したエッジの記録に基づく,ネットワークサンプリング機構のクラスに対する汎用モデルを提案する。
一般モデルに基づくスペクトルクラスタリングにより,コミュニティ検出が可能であることを示す。
論文 参考訳(メタデータ) (2020-08-09T04:53:13Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z) - Randomized spectral co-clustering for large-scale directed networks [15.486507430729052]
共同クラスタリングは、有向ネットワークの送信者と受信者を同時にクラスタ化することを目的としている。
スケッチ技術を活用し、2つのランダム化スペクトルコクラスタリングアルゴリズムを導出する。
我々は、それらの近似誤差率と誤クラスタリング誤差率を確立し、共クラスタリング文学の最先端結果よりも優れた境界を示す。
論文 参考訳(メタデータ) (2020-04-25T15:00:55Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
コミュニティは、ソーシャルネットワーク、生物学的ネットワーク、コンピュータおよび情報ネットワークを含むネットワークの共通の特徴である。
我々は,全同種ネットワークのコミュニティを同時に検出する効率的なメッセージパッシングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:36:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。