論文の概要: PALMS: Parallel Adaptive Lasso with Multi-directional Signals for Latent Networks Reconstruction
- arxiv url: http://arxiv.org/abs/2411.11464v1
- Date: Mon, 18 Nov 2024 10:58:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:36.860831
- Title: PALMS: Parallel Adaptive Lasso with Multi-directional Signals for Latent Networks Reconstruction
- Title(参考訳): PALMS: 遅延ネットワーク再構築のための多方向信号を用いた並列適応ラッソ
- Authors: Zhaoyu Xing, Wei Zhong,
- Abstract要約: 本稿では,圧縮センシング技術を用いたネットワーク再構成手法のための汎用分散並列計算フレームワークを提案する。
分散アルゴリズムを用いた近似推定は理論的結果を維持することができることを示す。
- 参考スコア(独自算出の注目度): 6.949853145487146
- License:
- Abstract: Large-scale networks exist in many field and play an important role in real-world dynamics. However, the networks are usually latent and expensive to detect, which becomes the main challenging for many applications and empirical analysis. Several statistical methods were proposed to infer the edges, but the complexity of algorithms make them hard to be applied for large-scale networks. In this paper, we proposed a general distributed and parallel computing framework for network reconstruction methods via compressive sensing technical, to make them feasible for inferring the super large networks in practice. Combining with the CALMS, we proposed for those estimators enjoy additional theoretical properties, such as the consistency and asymptotic normality, we prove that the approximate estimation utilizing the distributed algorithm can keep the theoretical results.
- Abstract(参考訳): 大規模ネットワークは多くの分野に存在し、現実世界の力学において重要な役割を果たしている。
しかし、ネットワークは通常遅延し、検出するのに費用がかかるため、多くのアプリケーションや経験的分析において最大の課題となる。
エッジを推測するためにいくつかの統計的手法が提案されたが、アルゴリズムの複雑さにより大規模ネットワークに適用することは困難である。
本稿では,圧縮センシング技術を用いたネットワーク再構築のための汎用分散並列計算フレームワークを提案する。
我々は,CALMSと組み合わせて,一貫性や漸近的正規性などの理論的特性を持つ推定器を提案し,分散アルゴリズムを用いた近似推定が理論的結果を維持できることを証明した。
関連論文リスト
- Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - A pseudo-likelihood approach to community detection in weighted networks [4.111899441919165]
本研究では,通常分布するエッジ重みを持つネットワークに対して,擬似的なコミュニティ推定アルゴリズムを提案する。
提案手法により得られた推定値が均質ネットワークの仮定の下で一貫したものであることを証明した。
シミュレーションネットワークとfMRIデータセットで、エッジウェイトは脳領域間の接続を表現している。
論文 参考訳(メタデータ) (2023-03-10T13:36:10Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
我々は,未使用の重み付きネットワークがその後のタスクを学習するための方法論とネットワーク表現構造を同定する。
提案手法を用いてトレーニングされたネットワークは,タスクのパフォーマンスを犠牲にすることなく,あるいは破滅的な忘れを伴わずに,複数のタスクを学習できることを示す。
論文 参考訳(メタデータ) (2022-07-18T15:07:13Z) - i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery [11.119895959906085]
ニューラルネットワークのための新しい構造化プルーニングアルゴリズム - i-SpaSPと呼ばれる反復型スパース構造化プルーニングを提案する。
i-SpaSPはネットワーク内の重要なパラメータ群を識別することで動作し、プルーニングされたネットワーク出力と高密度なネットワーク出力の残差に最も寄与する。
高い性能のサブネットワークを発見し, 証明可能なベースライン手法のプルーニング効率を, 数桁の精度で向上させることが示されている。
論文 参考訳(メタデータ) (2021-12-07T05:26:45Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
本稿では,ディープニューラルネットワークのトレーニング問題について検討し,最適化環境に隠された凸性を明らかにするための解析的アプローチを提案する。
我々は、標準のディープ・ネットワークとResNetを特別なケースとして含む、ディープ・パラレルなReLUネットワークアーキテクチャについて検討する。
論文 参考訳(メタデータ) (2021-10-18T18:00:36Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
パラメータ数を用いて,関数のクラスを複素反応ネットワークで近似できることを示す。
経験的リスク最小化については,複素反応ネットワークの臨界点集合が実数値ネットワークの固有部分集合であることを示す。
論文 参考訳(メタデータ) (2021-08-15T10:13:49Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
大規模アクセスはIoT(Internet of Things)ネットワークにおける重要な設計課題である。
我々は、マルチアンテナベースステーション(BS)と多数の単一アンテナIoTデバイスを備えたIoTネットワークの無許可アップリンク伝送を検討する。
本稿では,低計算複雑性と高ロバスト性を実現するために,ディープニューラルネットワークに基づく新しいアルゴリズムアンローリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T05:23:05Z) - The Principles of Deep Learning Theory [19.33681537640272]
この本は、実践的妥当性の深いニューラルネットワークを理解するための効果的な理論アプローチを開発する。
これらのネットワークがトレーニングから非自明な表現を効果的に学習する方法について説明する。
トレーニングネットワークのアンサンブルの有効モデル複雑性を,奥行き比が支配していることを示す。
論文 参考訳(メタデータ) (2021-06-18T15:00:00Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。