Score-Based Generative Models for Medical Image Segmentation using
Signed Distance Functions
- URL: http://arxiv.org/abs/2303.05966v2
- Date: Fri, 21 Jul 2023 11:21:30 GMT
- Title: Score-Based Generative Models for Medical Image Segmentation using
Signed Distance Functions
- Authors: Lea Bogensperger, Dominik Narnhofer, Filip Ilic, Thomas Pock
- Abstract summary: We propose a conditional score-based generative modeling framework to represent the signed distance function (SDF)
The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks.
- Score: 11.137438870686026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is a crucial task that relies on the ability to
accurately identify and isolate regions of interest in medical images. Thereby,
generative approaches allow to capture the statistical properties of
segmentation masks that are dependent on the respective structures. In this
work we propose a conditional score-based generative modeling framework to
represent the signed distance function (SDF) leading to an implicit
distribution of segmentation masks. The advantage of leveraging the SDF is a
more natural distortion when compared to that of binary masks. By learning the
score function of the conditional distribution of SDFs we can accurately sample
from the distribution of segmentation masks, allowing for the evaluation of
statistical quantities. Thus, this probabilistic representation allows for the
generation of uncertainty maps represented by the variance, which can aid in
further analysis and enhance the predictive robustness. We qualitatively and
quantitatively illustrate competitive performance of the proposed method on a
public nuclei and gland segmentation data set, highlighting its potential
utility in medical image segmentation applications.
Related papers
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study [1.83277723272657]
Routine computed tomography (CT) scans often detect a wide range of renal cysts, some of which may be malignant.
Current segmentation methods, however, do not offer sufficient interpretability at the feature and pixel levels.
We developed an interpretable segmentation framework and validated it on a multi-centric dataset.
arXiv Detail & Related papers (2024-08-07T14:14:05Z) - FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
We propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF)
By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks.
arXiv Detail & Related papers (2024-05-28T11:47:12Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
We propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models.
Our results show that CCDM achieves state-of-the-art performance on LIDC, and outperforms established baselines on the classical segmentation dataset Cityscapes.
arXiv Detail & Related papers (2023-03-15T19:16:47Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images.
The predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task.
arXiv Detail & Related papers (2023-02-06T18:10:08Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Diffusion Models for Implicit Image Segmentation Ensembles [1.444701913511243]
We present a novel semantic segmentation method based on diffusion models.
By modifying the training and sampling scheme, we show that diffusion models can perform lesion segmentation of medical images.
Compared to state-of-the-art segmentation models, our approach yields good segmentation results and, additionally, meaningful uncertainty maps.
arXiv Detail & Related papers (2021-12-06T16:28:15Z) - CQ-VAE: Coordinate Quantized VAE for Uncertainty Estimation with
Application to Disk Shape Analysis from Lumbar Spine MRI Images [1.5841288368322592]
We propose a powerful generative model to learn a representation of ambiguity and to generate probabilistic outputs.
Our model, named Coordinate Quantization Variational Autoencoder (CQ-VAE), employs a discrete latent space with an internal discrete probability distribution.
A matching algorithm is used to establish the correspondence between model-generated samples and "ground-truth" samples.
arXiv Detail & Related papers (2020-10-17T04:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.