論文の概要: Deep Spiking Neural Networks with High Representation Similarity Model
Visual Pathways of Macaque and Mouse
- arxiv url: http://arxiv.org/abs/2303.06060v3
- Date: Wed, 5 Apr 2023 12:29:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 15:21:28.505829
- Title: Deep Spiking Neural Networks with High Representation Similarity Model
Visual Pathways of Macaque and Mouse
- Title(参考訳): 高表現類似度モデルを用いたマカクとマウスの視覚経路を有するディープスパイキングニューラルネットワーク
- Authors: Liwei Huang, Zhengyu Ma, Liutao Yu, Huihui Zhou, Yonghong Tian
- Abstract要約: スパイクニューラルネットワーク(SNN)は、スパイクニューロンがスパイクの時系列で情報をエンコードしているため、生物学的に妥当なモデルである。
本研究では,視覚野を深部SNNで初めてモデル化し,また最先端の深部CNNとViTで比較した。
SNNのほぼ全ての類似度スコアは、平均6.6%のCNNよりも高い。
- 参考スコア(独自算出の注目度): 17.545204435882816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep artificial neural networks (ANNs) play a major role in modeling the
visual pathways of primate and rodent. However, they highly simplify the
computational properties of neurons compared to their biological counterparts.
Instead, Spiking Neural Networks (SNNs) are more biologically plausible models
since spiking neurons encode information with time sequences of spikes, just
like biological neurons do. However, there is a lack of studies on visual
pathways with deep SNNs models. In this study, we model the visual cortex with
deep SNNs for the first time, and also with a wide range of state-of-the-art
deep CNNs and ViTs for comparison. Using three similarity metrics, we conduct
neural representation similarity experiments on three neural datasets collected
from two species under three types of stimuli. Based on extensive similarity
analyses, we further investigate the functional hierarchy and mechanisms across
species. Almost all similarity scores of SNNs are higher than their
counterparts of CNNs with an average of 6.6%. Depths of the layers with the
highest similarity scores exhibit little differences across mouse cortical
regions, but vary significantly across macaque regions, suggesting that the
visual processing structure of mice is more regionally homogeneous than that of
macaques. Besides, the multi-branch structures observed in some top mouse
brain-like neural networks provide computational evidence of parallel
processing streams in mice, and the different performance in fitting macaque
neural representations under different stimuli exhibits the functional
specialization of information processing in macaques. Taken together, our study
demonstrates that SNNs could serve as promising candidates to better model and
explain the functional hierarchy and mechanisms of the visual system.
- Abstract(参考訳): 深層人工神経ネットワーク(ANN)は霊長類とネズミの視覚経路をモデル化する上で重要な役割を果たしている。
しかし、ニューロンの計算特性を生物学的に比較すると非常に単純化する。
スパイキングニューラルネットワーク(SNN)は、スパイキングニューロンが生物学的ニューロンと同じようにスパイクの時系列で情報をエンコードするので、生物学的にもっとも有効なモデルだ。
しかし、深部snsモデルを用いた視覚経路の研究が不足している。
本研究では,視覚野を初めて深部snsでモデル化し,それに加えて,最先端の深部cnnとvitsの比較を行った。
3つの類似度指標を用いて、2つの種から収集された3つの神経データセットを3種類の刺激で神経表現類似度実験を行う。
広範な類似性分析に基づき,本研究は種間の機能的階層と機構についてさらに検討する。
SNNのほぼ全ての類似度スコアは、平均6.6%のCNNよりも高い。
最も類似度が高い層の深さは、マウスの皮質領域ではほとんど差がないが、マカク領域ではかなり異なるため、マウスの視覚処理構造はマカクより局所的に均質であることが示唆された。
さらに、マウス上層脳のようなニューラルネットワークで観察されるマルチブランチ構造は、マウスにおける並列処理ストリームの計算的証拠を提供し、異なる刺激下でのマカク神経表現の適合性は、マカクにおける情報処理の機能的特殊化を示す。
本研究は,SNNが視覚系の機能的階層と機構をモデル化し,説明するための有望な候補として機能することを示す。
関連論文リスト
- Digit Recognition using Multimodal Spiking Neural Networks [3.046906600991174]
スパイキングニューラルネットワーク(SNN)は、生物学的にデータ処理にインスパイアされた第3世代のニューラルネットワークである。
SNNは、そのニューロモルフィック性のためにイベントベースのデータを処理するために使用される。
論文 参考訳(メタデータ) (2024-08-31T22:27:40Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
深部分離型畳み込みニューラルネットワーク(DS-CNN)の最近の進歩は、新しいアーキテクチャをもたらす。
本稿では,DS-CNNアーキテクチャのもう一つの顕著な特性を明らかにする。
論文 参考訳(メタデータ) (2024-01-25T19:05:53Z) - Connecting metrics for shape-texture knowledge in computer vision [1.7785095623975342]
深層ニューラルネットワークは、人間が画像の分類ミスを起こさないような、画像の多くの変化の影響を受けやすいままである。
この異なる振る舞いの一部は、視覚タスクで人間とディープニューラルネットワークが使用する機能の種類によって説明できるかもしれない。
論文 参考訳(メタデータ) (2023-01-25T14:37:42Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Similarity and Matching of Neural Network Representations [0.0]
我々は、深層ニューラルネットワークにおける表現の類似性を分析するために、Frankenstein博士と呼ばれるツールセットを使用します。
我々は、2つのトレーニングニューラルネットワークの与えられた層上でのアクティベーションを、縫合層で結合することで一致させることを目指している。
論文 参考訳(メタデータ) (2021-10-27T17:59:46Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。