論文の概要: Digit Recognition using Multimodal Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2409.00552v1
- Date: Sat, 31 Aug 2024 22:27:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:55:44.381197
- Title: Digit Recognition using Multimodal Spiking Neural Networks
- Title(参考訳): マルチモーダルスパイクニューラルネットワークを用いたディジット認識
- Authors: William Bjorndahl, Jack Easton, Austin Modoff, Eric C. Larson, Joseph Camp, Prasanna Rangarajan,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、生物学的にデータ処理にインスパイアされた第3世代のニューラルネットワークである。
SNNは、そのニューロモルフィック性のためにイベントベースのデータを処理するために使用される。
- 参考スコア(独自算出の注目度): 3.046906600991174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are the third generation of neural networks that are biologically inspired to process data in a fashion that emulates the exchange of signals in the brain. Within the Computer Vision community SNNs have garnered significant attention due in large part to the availability of event-based sensors that produce a spatially resolved spike train in response to changes in scene radiance. SNNs are used to process event-based data due to their neuromorphic nature. The proposed work examines the neuromorphic advantage of fusing multiple sensory inputs in classification tasks. Specifically we study the performance of a SNN in digit classification by passing in a visual modality branch (Neuromorphic-MNIST [N-MNIST]) and an auditory modality branch (Spiking Heidelberg Digits [SHD]) from datasets that were created using event-based sensors to generate a series of time-dependent events. It is observed that multi-modal SNNs outperform unimodal visual and unimodal auditory SNNs. Furthermore, it is observed that the process of sensory fusion is insensitive to the depth at which the visual and auditory branches are combined. This work achieves a 98.43% accuracy on the combined N-MNIST and SHD dataset using a multimodal SNN that concatenates the visual and auditory branches at a late depth.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、脳内の信号交換をエミュレートする方法で、生物学的にデータ処理にインスパイアされた第3世代のニューラルネットワークである。
Computer Visionコミュニティ内のSNNは、シーンの放射率の変化に応じて空間的に解決されたスパイクトレインを生成するイベントベースのセンサーが利用可能であることから、大きな注目を集めている。
SNNは、そのニューロモルフィック性のためにイベントベースのデータを処理するために使用される。
本研究は, 分類作業における複数の感覚入力を融合させることによるニューロモルフィックの利点について検討した。
具体的には、イベントベースのセンサを用いて生成したデータセットから、視覚的モダリティ分岐(Neuromorphic-MNIST [N-MNIST])と聴覚的モダリティ分岐(Spiking Heidelberg Digits (SHD))を渡すことで、桁分類におけるSNNの性能を検討した。
マルチモーダルSNNは, 視覚的・聴覚的SNNよりも優れていた。
さらに,視覚枝と聴覚枝が結合した深度に対して,感覚融合のプロセスは無神経であることが観察された。
この研究は、視覚枝と聴覚枝を遅い深さで結合するマルチモーダルSNNを用いて、N-MNISTとSHDデータセットを組み合わせた98.43%の精度を達成する。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
スパースニューラルネットワーク(SNN)は、効率的な特徴選択のための強力なツールとして登場した。
動的スパーストレーニング(DST)アルゴリズムで訓練されたSNNは、平均して50%以上のメモリと55%以上のFLOPを削減できることを示す。
以上の結果から,DSTアルゴリズムで訓練したSNNによる特徴選択は,平均して50ドル以上のメモリと55%のFLOPを削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-08T16:48:33Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
スパイキングニューラルネットワーク(SNN)は、固有の時間処理とスパイクベースの計算のため、人工知能ニューラルネットワーク(ANN)と区別する。
スパイクニューロンを用いたデータ処理は、他の2つの生物学的にインスピレーションを受けたニューロンの特徴と接続重みを協調学習することで向上できることを示す。
論文 参考訳(メタデータ) (2023-09-12T09:13:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification [13.521272923545409]
Spi Neural Networksは、人工知能の第3波の脳にインスパイアされた学習モデルとしてしばしば評価される。
本稿では,ビデオ認識タスクのための教師なし学習を用いたヘテロジニアススパイキングニューラルネットワーク(HRSNN)を提案する。
本研究では,時間的バックプロパゲーション訓練による教師付きSNNに類似した性能を実現することができるが,少ない計算量で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-09-22T16:34:01Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - N-Omniglot: a Large-scale Neuromorphic Dataset for Spatio-Temporal
Sparse Few-shot Learning [10.812738608234321]
我々は、Dynamic Vision Sensor (DVS)を用いて、最初のニューロモルフィックデータセット、N-Omniglotを提供する。
1623種類の手書き文字が含まれており、クラスごとに20のサンプルしか持たない。
このデータセットは、数ショットの学習領域でSNNアルゴリズムを開発するための強力なチャレンジと適切なベンチマークを提供する。
論文 参考訳(メタデータ) (2021-12-25T12:41:34Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率と低レイテンシを含む、魅力的な潜在的な利点を提供する。
高性能SNNにとって有望な領域の1つは、テンプレートマッチングと画像認識である。
本研究では,視覚的位置認識(VPR)タスクのための最初の高性能SNNを紹介する。
論文 参考訳(メタデータ) (2021-09-14T05:40:40Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Comparing SNNs and RNNs on Neuromorphic Vision Datasets: Similarities
and Differences [36.82069150045153]
スパイキングニューラルネットワーク(SNN)とリカレントニューラルネットワーク(RNN)は、ニューロモルフィックデータに基づいてベンチマークされる。
本研究では,SNNとRNNをニューロモルフィックデータと比較するための系統的研究を行う。
論文 参考訳(メタデータ) (2020-05-02T10:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。