論文の概要: Art-ificial Intelligence: The Effect of AI Disclosure on Evaluations of Creative Content
- arxiv url: http://arxiv.org/abs/2303.06217v2
- Date: Tue, 25 Jun 2024 14:44:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 23:19:26.875585
- Title: Art-ificial Intelligence: The Effect of AI Disclosure on Evaluations of Creative Content
- Title(参考訳): アート・フィフィアル・インテリジェンス:AIの開示が創造的コンテンツの評価に及ぼす影響
- Authors: Manav Raj, Justin Berg, Rob Seamans,
- Abstract要約: 創造的コンテンツ作成におけるAIの利用に関する情報開示は、そのようなコンテンツの人間による評価に影響を及ぼすことを示す。
我々はこの結果を解釈し、AI生成コンテンツに対する反応が、コンテンツが明らかに「人間」と見なされる場合、負である可能性を示唆する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of generative AI technologies, such as OpenAI's ChatGPT chatbot, has expanded the scope of tasks that AI tools can accomplish and enabled AI-generated creative content. In this study, we explore how disclosure regarding the use of AI in the creation of creative content affects human evaluation of such content. In a series of pre-registered experimental studies, we show that AI disclosure has no meaningful effect on evaluation either for creative or descriptive short stories, but that AI disclosure has a negative effect on evaluations for emotionally evocative poems written in the first person. We interpret this result to suggest that reactions to AI-generated content may be negative when the content is viewed as distinctly "human." We discuss the implications of this work and outline planned pathways of research to better understand whether and when AI disclosure may affect the evaluation of creative content.
- Abstract(参考訳): OpenAIのChatGPTチャットボットのような生成AI技術の出現は、AIツールが達成できるタスクの範囲を広げ、AI生成のクリエイティブコンテンツを有効にした。
本研究では,創造的コンテンツ作成におけるAIの利用に関する情報開示が,そのようなコンテンツの人的評価にどのように影響するかを考察する。
事前登録された一連の実験研究において、AI開示は創造的または記述的な短編小説の評価に有意な影響を及ぼさないが、AI開示は第一人称で書かれた感情的な叙情詩の評価に悪影響を及ぼすことを示した。
この結果は、AIが生成したコンテンツに対する反応が、コンテンツが明らかに「人間」と見なされる場合、陰性である可能性を示唆するものである。
本研究の意義を論じ,AI公開が創造的コンテンツの評価に影響を及ぼすかどうかをよりよく理解するための研究の計画的経路を概説する。
関連論文リスト
- Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Agency and legibility for artists through Experiential AI [12.941266914933454]
Experiential AIは、AIを具体的で明示的なものにするという課題に対処する、新たな研究分野である。
本稿では,創造的データ探索を目的とした経験的AIシステムの実証事例について報告する。
実験的なAIがアーティストの妥当性とエージェンシーを高める方法について論じる。
論文 参考訳(メタデータ) (2023-06-04T11:00:07Z) - AI and the creative realm: A short review of current and future
applications [2.1320960069210484]
本研究は創造性と人工知能(AI)の概念を探求する。
より洗練されたAIモデルの開発と人間とコンピュータの相互作用ツールの普及により、芸術的創造におけるAIの新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-06-01T12:28:08Z) - A Portrait of Emotion: Empowering Self-Expression through AI-Generated
Art [0.0]
本研究では,創造的表現を通じて著者の認知過程を反映する生成人工知能(AI)の可能性と限界について検討した。
その結果,主イベントに対する著者の感情の記述に基づく画像の嗜好が示された。
生成AIを用いた研究フレームワークは、関連する分野におけるAIベースの介入を設計するのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T06:54:53Z) - Designing Participatory AI: Creative Professionals' Worries and
Expectations about Generative AI [8.379286663107845]
生成AI(英: Generative AI)とは、テキストのプロンプトに基づいて視覚的または書き起こされたコンテンツを自動生成する一連の技術で、複雑さが飛躍的に増加し、わずか数年で広く利用できるようになる技術である。
本稿では,創造的プロフェッショナルが生成AIをどのように考えるかに関する質的研究の結果を報告する。
論文 参考訳(メタデータ) (2023-03-15T20:57:03Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。