Continuous Patient Monitoring with AI: Real-Time Analysis of Video in Hospital Care Settings
- URL: http://arxiv.org/abs/2412.13152v1
- Date: Tue, 17 Dec 2024 18:23:33 GMT
- Title: Continuous Patient Monitoring with AI: Real-Time Analysis of Video in Hospital Care Settings
- Authors: Paolo Gabriel, Peter Rehani, Tyler Troy, Tiffany Wyatt, Michael Choma, Narinder Singh,
- Abstract summary: This study introduces an AI-driven platform for continuous and passive patient monitoring in hospital settings.
The platform provides real-time insights into patient behavior and interactions through video analysis.
The dataset, compiled in collaboration with 11 hospital partners, encompasses over 300 high-risk fall patients.
- Score: 0.0
- License:
- Abstract: This study introduces an AI-driven platform for continuous and passive patient monitoring in hospital settings, developed by LookDeep Health. Leveraging advanced computer vision, the platform provides real-time insights into patient behavior and interactions through video analysis, securely storing inference results in the cloud for retrospective evaluation. The dataset, compiled in collaboration with 11 hospital partners, encompasses over 300 high-risk fall patients and over 1,000 days of inference, enabling applications such as fall detection and safety monitoring for vulnerable patient populations. To foster innovation and reproducibility, an anonymized subset of this dataset is publicly available. The AI system detects key components in hospital rooms, including individual presence and role, furniture location, motion magnitude, and boundary crossings. Performance evaluation demonstrates strong accuracy in object detection (macro F1-score = 0.92) and patient-role classification (F1-score = 0.98), as well as reliable trend analysis for the "patient alone" metric (mean logistic regression accuracy = 0.82 \pm 0.15). These capabilities enable automated detection of patient isolation, wandering, or unsupervised movement-key indicators for fall risk and other adverse events. This work establishes benchmarks for validating AI-driven patient monitoring systems, highlighting the platform's potential to enhance patient safety and care by providing continuous, data-driven insights into patient behavior and interactions.
Related papers
- A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre [0.0]
The study proposes an all-encompassing framework for the optimization of patient flow.
Using a comprehensive dataset of 2.3 million de-identified patient records, we analyzed demographics, diagnoses, treatments, services, costs, and charges.
Our model predicts patient length of stay (LoS) upon admission using supervised learning algorithms.
arXiv Detail & Related papers (2025-01-30T18:01:48Z) - Detecting Activities of Daily Living in Egocentric Video to Contextualize Hand Use at Home in Outpatient Neurorehabilitation Settings [2.9158689853305693]
We show that an object-centric approach, focusing on what objects patients interact with rather than how they move, can effectively recognize Activities of Daily Living (ADL) in real-world rehabilitation settings.
We evaluated our models on a complex dataset collected in the wild comprising 2261 minutes of egocentric video from 16 participants with impaired hand function.
arXiv Detail & Related papers (2024-12-14T14:38:27Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - The Potential of Wearable Sensors for Assessing Patient Acuity in
Intensive Care Unit (ICU) [12.359907390320453]
Acuity assessments are vital in critical care settings to provide timely interventions and fair resource allocation.
Traditional acuity scores do not incorporate granular information such as patients' mobility level, which can indicate recovery or deterioration in the ICU.
In this study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for developing an AI-driven acuity assessment score.
arXiv Detail & Related papers (2023-11-03T21:52:05Z) - Detecting Visual Cues in the Intensive Care Unit and Association with Patient Clinical Status [0.9867627975175174]
Existing patient assessments in the ICU are mostly sporadic and administered manually.
We developed a new "masked loss computation" technique that addresses the data imbalance problem.
We performed AU inference on 634,054 frames to evaluate the association between facial AUs and clinically important patient conditions.
arXiv Detail & Related papers (2023-11-01T15:07:03Z) - U-PASS: an Uncertainty-guided deep learning Pipeline for Automated Sleep
Staging [61.6346401960268]
We propose a machine learning pipeline called U-PASS tailored for clinical applications that incorporates uncertainty estimation at every stage of the process.
We apply our uncertainty-guided deep learning pipeline to the challenging problem of sleep staging and demonstrate that it systematically improves performance at every stage.
arXiv Detail & Related papers (2023-06-07T08:27:36Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.7503982558916906]
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
arXiv Detail & Related papers (2023-03-11T00:25:55Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.