Mapping the Design Space of Interactions in Human-AI Text Co-creation
Tasks
- URL: http://arxiv.org/abs/2303.06430v2
- Date: Tue, 14 Mar 2023 13:44:40 GMT
- Title: Mapping the Design Space of Interactions in Human-AI Text Co-creation
Tasks
- Authors: Zijian Ding, Joel Chan
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive text generation capabilities.
We present a spectrum of content generation tasks and their corresponding human-AI interaction patterns.
- Score: 8.160343645537106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive text generation
capabilities, prompting us to reconsider the future of human-AI co-creation and
how humans interact with LLMs. In this paper, we present a spectrum of content
generation tasks and their corresponding human-AI interaction patterns. These
tasks include: 1) fixed-scope content curation tasks with minimal human-AI
interactions, 2) independent creative tasks with precise human-AI interactions,
and 3) complex and interdependent creative tasks with iterative human-AI
interactions. We encourage the generative AI and HCI research communities to
focus on the more complex and interdependent tasks, which require greater
levels of human involvement.
Related papers
- Perceiving and Acting in First-Person: A Dataset and Benchmark for Egocentric Human-Object-Human Interactions [110.43343503158306]
This paper embeds the manual-assisted task into a vision-language-action framework, where the assistant provides services to the instructor following egocentric vision and commands.<n>Under this setting, we accomplish InterVLA, the first large-scale human-object-human interaction dataset with 11.4 hours and 1.2M frames of multimodal data.<n>We establish novel benchmarks on egocentric human motion estimation, interaction synthesis, and interaction prediction with comprehensive analysis.
arXiv Detail & Related papers (2025-08-06T17:46:23Z) - A Task-Driven Human-AI Collaboration: When to Automate, When to Collaborate, When to Challenge [16.734679201317896]
We show how proper human-AI integration maintains meaningful agency while improving performance.<n>This framework lays the foundation for practically effective and morally sound human-AI collaboration.
arXiv Detail & Related papers (2025-05-23T23:19:15Z) - What's So Human about Human-AI Collaboration, Anyway? Generative AI and Human-Computer Interaction [6.937302622894666]
We identify how, given the language capabilities of generative AI, common features of human-human collaboration can be applied to the study of human-computer interaction.
We provide insights drawn from interviews with industry personnel working on building human-AI collaboration systems, as well as our collaborations with end-users to build a multimodal AI assistant for task support.
arXiv Detail & Related papers (2025-03-07T20:48:18Z) - Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
We advocate for a shift toward viewing AI as a learning partner, akin to a student who learns from interactions with humans.
We suggest that a "third mind" emerges through collaborative human-AI relationships.
arXiv Detail & Related papers (2024-10-07T19:19:39Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others.
Mutual Theory of Mind (MToM) arises when AI agents with ToM capability collaborate with humans.
We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent.
arXiv Detail & Related papers (2024-09-13T13:19:48Z) - CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
We introduce CREW, a platform to facilitate Human-AI teaming research and engage collaborations from multiple scientific disciplines.
It includes pre-built tasks for cognitive studies and Human-AI teaming with expandable potentials from our modular design.
CREW benchmarks real-time human-guided reinforcement learning agents using state-of-the-art algorithms and well-tuned baselines.
arXiv Detail & Related papers (2024-07-31T21:43:55Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
We argue that human-AI collaboration should be interactive, with humans monitoring the work of AI agents and providing feedback that the agent can understand and utilize.
In this work, we explore these directions using the challenging task defined by the IGLU competition, an interactive grounded language understanding task in a MineCraft-like world.
arXiv Detail & Related papers (2023-04-21T05:37:59Z) - Mutual Theory of Mind for Human-AI Communication [5.969858080492586]
New developments are enabling AI systems to perceive, recognize, and respond with social cues based on humans' explicit or implicit behavioral and verbal cues.
These AI systems are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners.
We propose the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research.
arXiv Detail & Related papers (2022-10-07T22:46:04Z) - IGLU 2022: Interactive Grounded Language Understanding in a
Collaborative Environment at NeurIPS 2022 [63.07251290802841]
We propose IGLU: Interactive Grounded Language Understanding in a Collaborative Environment.
The primary goal of the competition is to approach the problem of how to develop interactive embodied agents.
This research challenge is naturally related, but not limited, to two fields of study that are highly relevant to the NeurIPS community.
arXiv Detail & Related papers (2022-05-27T06:12:48Z) - A Mental-Model Centric Landscape of Human-AI Symbiosis [31.14516396625931]
We introduce a significantly general version of human-aware AI interaction scheme, called generalized human-aware interaction (GHAI)
We will see how this new framework allows us to capture the various works done in the space of human-AI interaction and identify the fundamental behavioral patterns supported by these works.
arXiv Detail & Related papers (2022-02-18T22:08:08Z) - NeurIPS 2021 Competition IGLU: Interactive Grounded Language
Understanding in a Collaborative Environment [71.11505407453072]
We propose IGLU: Interactive Grounded Language Understanding in a Collaborative Environment.
The primary goal of the competition is to approach the problem of how to build interactive agents that learn to solve a task while provided with grounded natural language instructions in a collaborative environment.
This research challenge is naturally related, but not limited, to two fields of study that are highly relevant to the NeurIPS community: Natural Language Understanding and Generation (NLU/G) and Reinforcement Learning (RL)
arXiv Detail & Related papers (2021-10-13T07:13:44Z) - LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities [119.88381048477854]
We introduce the LEMMA dataset to provide a single home to address missing dimensions with meticulously designed settings.
We densely annotate the atomic-actions with human-object interactions to provide ground-truths of the compositionality, scheduling, and assignment of daily activities.
We hope this effort would drive the machine vision community to examine goal-directed human activities and further study the task scheduling and assignment in the real world.
arXiv Detail & Related papers (2020-07-31T00:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.