Towards Practical Multi-Robot Hybrid Tasks Allocation for Autonomous
Cleaning
- URL: http://arxiv.org/abs/2303.06531v2
- Date: Tue, 4 Apr 2023 06:13:27 GMT
- Title: Towards Practical Multi-Robot Hybrid Tasks Allocation for Autonomous
Cleaning
- Authors: Yabin Wang, Xiaopeng Hong, Zhiheng Ma, Tiedong Ma, Baoxing Qin, Zhou
Su
- Abstract summary: We formulate multi-robot hybrid-task allocation under the uncertain cleaning environment as a robust optimization problem.
We establish a dataset of emph100 instances made from floor plans, each of which has 2D manually-labeled images and a 3D model.
We provide comprehensive results on the collected dataset using three traditional optimization approaches and a deep reinforcement learning-based solver.
- Score: 40.715435411065336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task allocation plays a vital role in multi-robot autonomous cleaning
systems, where multiple robots work together to clean a large area. However,
most current studies mainly focus on deterministic, single-task allocation for
cleaning robots, without considering hybrid tasks in uncertain working
environments. Moreover, there is a lack of datasets and benchmarks for relevant
research. In this paper, to address these problems, we formulate multi-robot
hybrid-task allocation under the uncertain cleaning environment as a robust
optimization problem. Firstly, we propose a novel robust mixed-integer linear
programming model with practical constraints including the task order
constraint for different tasks and the ability constraints of hybrid robots.
Secondly, we establish a dataset of \emph{100} instances made from floor plans,
each of which has 2D manually-labeled images and a 3D model. Thirdly, we
provide comprehensive results on the collected dataset using three traditional
optimization approaches and a deep reinforcement learning-based solver. The
evaluation results show that our solution meets the needs of multi-robot
cleaning task allocation and the robust solver can protect the system from
worst-case scenarios with little additional cost. The benchmark will be
available at
{https://github.com/iamwangyabin/Multi-robot-Cleaning-Task-Allocation}.
Related papers
- COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses [1.2810395420131764]
Multi-Agent Path Finding (MAPF) is an important optimization problem underlying the deployment of robots in automated warehouses and factories.
We consider a realistic problem of online order delivery in a warehouse, where a fleet of robots bring the products belonging to each order from shelves to workstations.
This creates a stream of inter-dependent pickup and delivery tasks and the associated MAPF problem consists of computing realistic collision-free robot trajectories.
arXiv Detail & Related papers (2024-08-26T15:13:38Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning [61.294110816231886]
We introduce a sparse, reusable, and flexible policy, Sparse Diffusion Policy (SDP)
SDP selectively activates experts and skills, enabling efficient and task-specific learning without retraining the entire model.
Demos and codes can be found in https://forrest-110.io/sparse_diffusion_policy/.
arXiv Detail & Related papers (2024-07-01T17:59:56Z) - MANER: Multi-Agent Neural Rearrangement Planning of Objects in Cluttered
Environments [8.15681999722805]
This paper proposes a learning-based framework for multi-agent object rearrangement planning.
It addresses the challenges of task sequencing and path planning in complex environments.
arXiv Detail & Related papers (2023-06-10T23:53:28Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Multi-Robot Task Allocation -- Complexity and Approximation [37.231854068835005]
Multi-robot task allocation is crucial for various real-world robotic applications such as search, rescue and area exploration.
We consider the Single-Task robots and Multi-Robot tasks Instantaneous Assignment (ST-MR-IA) setting where each task requires at least a certain number of robots and each robot can work on at most one task and incurs an operational cost for each task.
arXiv Detail & Related papers (2021-03-23T08:12:27Z) - Optimal Sequential Task Assignment and Path Finding for Multi-Agent
Robotic Assembly Planning [42.38068056643171]
We study the problem of sequential task assignment and collision-free routing for large teams of robots in applications with inter-task precedence constraints.
We propose a hierarchical algorithm for computing makespan-optimal solutions to the problem.
arXiv Detail & Related papers (2020-06-16T00:45:07Z) - Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots [5.739787445246959]
We propose a novel planning method that can efficiently estimate the order and positions of the objects to be tidied up by learning the parameters of a probabilistic generative model.
The model allows a robot to learn the distributions of the co-occurrence probability of the objects and places to tidy up using the multimodal sensor information collected in a tidied environment.
We evaluate the effectiveness of the proposed method by an experimental simulation that reproduces the conditions of the Tidy Up Here task of the World Robot Summit 2018 international robotics competition.
arXiv Detail & Related papers (2020-02-10T11:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.