論文の概要: Scale-aware Two-stage High Dynamic Range Imaging
- arxiv url: http://arxiv.org/abs/2303.06575v1
- Date: Sun, 12 Mar 2023 05:17:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 18:04:20.164677
- Title: Scale-aware Two-stage High Dynamic Range Imaging
- Title(参考訳): スケール対応2段階高ダイナミックレンジイメージング
- Authors: Hui Li, Xuyang Yao, Wuyuan Xie, Miaohui Wang
- Abstract要約: 本稿では,高品質なゴーストフリー画像合成を実現するため,スケールアウェアな2段階ハイレンジイメージングフレームワーク(ST)を提案する。
具体的には,機能アライメントと2段階融合からなるフレームワークについて述べる。
特徴融合の第1段階では,ゴーストアーティファクトの少ない予備的な結果が得られる。
第2段階では,提案したSTの有効性を,速度と品質の観点から検証する。
- 参考スコア(独自算出の注目度): 13.587403084724015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep high dynamic range (HDR) imaging as an image translation issue has
achieved great performance without explicit optical flow alignment. However,
challenges remain over content association ambiguities especially caused by
saturation and large-scale movements. To address the ghosting issue and enhance
the details in saturated regions, we propose a scale-aware two-stage high
dynamic range imaging framework (STHDR) to generate high-quality ghost-free HDR
image. The scale-aware technique and two-stage fusion strategy can
progressively and effectively improve the HDR composition performance.
Specifically, our framework consists of feature alignment and two-stage fusion.
In feature alignment, we propose a spatial correct module (SCM) to better
exploit useful information among non-aligned features to avoid ghosting and
saturation. In the first stage of feature fusion, we obtain a preliminary
fusion result with little ghosting. In the second stage, we conflate the
results of the first stage with aligned features to further reduce residual
artifacts and thus improve the overall quality. Extensive experimental results
on the typical test dataset validate the effectiveness of the proposed STHDR in
terms of speed and quality.
- Abstract(参考訳): 画像翻訳問題としてのDeep High Dynamic Range(HDR)イメージングは、光フローアライメントを明示することなく、優れた性能を実現している。
しかし、コンテンツアソシエーションの曖昧さ、特に飽和や大規模な動きによる課題は残る。
本研究では, ゴースト問題に対処し, 飽和領域における詳細性を高めるため, 高品質なゴーストフリーHDR画像を生成するための2段階高ダイナミックレンジイメージングフレームワーク(STHDR)を提案する。
スケールアウェア技術と2段階融合戦略は、HDR合成性能を段階的に効果的に向上させることができる。
具体的には,機能アライメントと2段階融合からなる。
機能アライメントにおいて,非アライメント機能のうち有用な情報を有効利用し,ゴーストや飽和を避けるために,空間修正モジュール(SCM)を提案する。
機能融合の第1段階では,ゴーストがほとんどない予備核融合結果が得られる。
第2段階では,第1ステージの結果をアライメントした特徴で要約し,残留物をさらに低減し,全体的な品質を向上させる。
典型的なテストデータセットの大規模な実験結果は、速度と品質の観点から提案したSTHDRの有効性を検証した。
関連論文リスト
- Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
近年の拡散モデル (DM) はHDRイメージング分野に導入されている。
DMは画像全体を推定するために大きなモデルで広範囲の反復を必要とする。
ゴーストフリーHDRイメージングのための低周波数対応拡散(LF-Diff)モデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T01:32:11Z) - PASTA: Towards Flexible and Efficient HDR Imaging Via Progressively Aggregated Spatio-Temporal Alignment [91.38256332633544]
PASTAは、HDRデゴスティングのためのプログレッシブアグリゲーションアグリゲーション・時空間アライメントフレームワークである。
提案手法は,特徴分散中の階層的表現を活用することにより,有効性と効率性を実現する。
実験結果から,従来のSOTA法よりもPASTAの方が視覚的品質と性能の両方で優れていることが示された。
論文 参考訳(メタデータ) (2024-03-15T15:05:29Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
高ダイナミックレンジ(LDR)画像は、既存のディープニューラルネットワーク(DNN)技術により、複数の低ダイナミックレンジ(LDR)画像から復元することができる。
DNNは、LDR画像が飽和度と大きな動きを持つ場合、ゴーストアーティファクトを生成する。
拡散モデルの条件としてLDR特徴を利用する画像生成としてHDRデゴースト問題を定式化する。
論文 参考訳(メタデータ) (2023-11-02T01:53:55Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T08:07:26Z) - High Dynamic Range Imaging of Dynamic Scenes with Saturation
Compensation but without Explicit Motion Compensation [20.911738532410766]
高ダイナミックレンジ(LDR)イメージングは、カメラセンサの限界により大量の情報が失われるため、非常に難しい課題である。
HDRイメージングでは、複数の低ダイナミックレンジ(LDR)画像を露出の変化で捉え、より多くの情報を収集する手法がある。
既存の手法のほとんどはゴーストのアーチファクトを減らすために運動補償に重点を置いているが、それでも満足できない結果をもたらす。
論文 参考訳(メタデータ) (2023-08-22T02:44:03Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
そこで本研究では,SSHDRと呼ばれる2段階の訓練を通した短距離HDRイメージングを実現するための,新しい半教師付きアプローチを提案する。
以前の方法とは異なり、コンテンツを直接回復し、ゴーストを同時に除去することは、最適に達成することが難しい。
実験により、SSHDRは異なるデータセットの内外における定量的かつ定性的に最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-14T03:42:51Z) - Deep Progressive Feature Aggregation Network for High Dynamic Range
Imaging [24.94466716276423]
本研究では,動的シーンにおけるHDR画像の画質向上のための高度な特徴集約ネットワークを提案する。
提案手法は,高対応特徴を暗黙的にサンプリングし,それらを粗い方法で集約してアライメントする。
実験の結果,提案手法は異なるシーン下での最先端性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2022-08-04T04:37:35Z) - SJ-HD^2R: Selective Joint High Dynamic Range and Denoising Imaging for
Dynamic Scenes [17.867412310873732]
Ghosting artifacts, Motion blur, Lowfidelity in highlightは、高ダイナミックレンジ(LDR)イメージングにおける主な課題である。
本稿では,2つのサブネットワークを含むHDRとデノナイズパイプラインを提案する。
私たちは、最初の共同HDRとデノナイジングベンチマークデータセットを作成します。
論文 参考訳(メタデータ) (2022-06-20T07:49:56Z) - HDR Reconstruction from Bracketed Exposures and Events [12.565039752529797]
高品質なHDR画像の再構成は、現代の計算写真の中心にある。
特徴領域におけるブラケット画像とイベントを融合したマルチモーダルなエンドツーエンド学習型HDRイメージングシステムを提案する。
我々のフレームワークは、スライディングウィンドウを使用して入力イベントストリームをサブサンプリングすることで、イベントの時間分解能を高める。
論文 参考訳(メタデータ) (2022-03-28T15:04:41Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。