From Compass and Ruler to Convolution and Nonlinearity: On the
Surprising Difficulty of Understanding a Simple CNN Solving a Simple
Geometric Estimation Task
- URL: http://arxiv.org/abs/2303.06638v1
- Date: Sun, 12 Mar 2023 11:30:49 GMT
- Title: From Compass and Ruler to Convolution and Nonlinearity: On the
Surprising Difficulty of Understanding a Simple CNN Solving a Simple
Geometric Estimation Task
- Authors: Thomas Dag\`es, Michael Lindenbaum, Alfred M. Bruckstein
- Abstract summary: We propose to address a simple well-posed learning problem using a simple convolutional neural network.
Surprisingly, understanding what trained networks have learned is difficult and, to some extent, counter-intuitive.
- Score: 6.230751621285322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are omnipresent, but remain poorly understood. Their
increasing complexity and use in critical systems raises the important
challenge to full interpretability. We propose to address a simple well-posed
learning problem: estimating the radius of a centred pulse in a one-dimensional
signal or of a centred disk in two-dimensional images using a simple
convolutional neural network. Surprisingly, understanding what trained networks
have learned is difficult and, to some extent, counter-intuitive. However, an
in-depth theoretical analysis in the one-dimensional case allows us to
comprehend constraints due to the chosen architecture, the role of each filter
and of the nonlinear activation function, and every single value taken by the
weights of the model. Two fundamental concepts of neural networks arise: the
importance of invariance and of the shape of the nonlinear activation
functions.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
sinusoidal neural networks with activations have been proposed as an alternative to networks with traditional activation functions.
We first propose a simplified version of such sinusoidal neural networks, which allows both for easier practical implementation and simpler theoretical analysis.
We then analyze the behavior of these networks from the neural tangent kernel perspective and demonstrate that their kernel approximates a low-pass filter with an adjustable bandwidth.
arXiv Detail & Related papers (2022-11-26T07:41:48Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - Training Integrable Parameterizations of Deep Neural Networks in the
Infinite-Width Limit [0.0]
Large-width dynamics has emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood that the nature of the trained model radically changes depending on the scale of the initial random weights.
We propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics.
arXiv Detail & Related papers (2021-10-29T07:53:35Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
In work, we show that these common perceptions can be completely false in the early phase of learning.
We argue that this surprising simplicity can persist in networks with more layers with convolutional architecture.
arXiv Detail & Related papers (2020-06-25T17:42:49Z) - An analytic theory of shallow networks dynamics for hinge loss
classification [14.323962459195771]
We study the training dynamics of a simple type of neural network: a single hidden layer trained to perform a classification task.
We specialize our theory to the prototypical case of a linearly separable dataset and a linear hinge loss.
This allow us to address in a simple setting several phenomena appearing in modern networks such as slowing down of training dynamics, crossover between rich and lazy learning, and overfitting.
arXiv Detail & Related papers (2020-06-19T16:25:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.