Object-Centric Multi-Task Learning for Human Instances
- URL: http://arxiv.org/abs/2303.06800v1
- Date: Mon, 13 Mar 2023 01:10:50 GMT
- Title: Object-Centric Multi-Task Learning for Human Instances
- Authors: Hyeongseok Son, Sangil Jung, Solae Lee, Seongeun Kim, Seung-In Park,
ByungIn Yoo
- Abstract summary: We explore a compact multi-task network architecture that maximally shares the parameters of the multiple tasks via object-centric learning.
We propose a novel query design to encode the human instance information effectively, called human-centric query (HCQ)
Experimental results show that the proposed multi-task network achieves comparable accuracy to state-of-the-art task-specific models.
- Score: 8.035105819936808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human is one of the most essential classes in visual recognition tasks such
as detection, segmentation, and pose estimation. Although much effort has been
put into individual tasks, multi-task learning for these three tasks has been
rarely studied. In this paper, we explore a compact multi-task network
architecture that maximally shares the parameters of the multiple tasks via
object-centric learning. To this end, we propose a novel query design to encode
the human instance information effectively, called human-centric query (HCQ).
HCQ enables for the query to learn explicit and structural information of human
as well such as keypoints. Besides, we utilize HCQ in prediction heads of the
target tasks directly and also interweave HCQ with the deformable attention in
Transformer decoders to exploit a well-learned object-centric representation.
Experimental results show that the proposed multi-task network achieves
comparable accuracy to state-of-the-art task-specific models in human
detection, segmentation, and pose estimation task, while it consumes less
computational costs.
Related papers
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-Person Multi-Task Human-Centric Perception [37.667147915777534]
Human-centric perception is a long-standing problem for computer vision.
This paper introduces a unified and versatile framework (HQNet) for single-stage multi-person multi-task human-centric perception (HCP)
Human Query captures intricate instance-level features for individual persons and disentangles complex multi-person scenarios.
arXiv Detail & Related papers (2023-12-09T10:36:43Z) - Weakly Supervised Multi-Task Representation Learning for Human Activity
Analysis Using Wearables [2.398608007786179]
We propose a weakly supervised multi-output siamese network that learns to map the data into multiple representation spaces.
The representation of the data samples are positioned in the space such that the data with the same semantic meaning in that aspect are closely located to each other.
arXiv Detail & Related papers (2023-08-06T08:20:07Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
We present a flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTingAnism (ROSETTA)
Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks.
Experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance.
arXiv Detail & Related papers (2022-05-06T07:31:28Z) - MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning
using an Anchor Free Approach [0.13764085113103217]
Multitask learning is a common approach in machine learning.
In this paper we augment the CenterNet anchor-free approach for training multiple perception related tasks together.
arXiv Detail & Related papers (2021-08-11T06:57:04Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities [119.88381048477854]
We introduce the LEMMA dataset to provide a single home to address missing dimensions with meticulously designed settings.
We densely annotate the atomic-actions with human-object interactions to provide ground-truths of the compositionality, scheduling, and assignment of daily activities.
We hope this effort would drive the machine vision community to examine goal-directed human activities and further study the task scheduling and assignment in the real world.
arXiv Detail & Related papers (2020-07-31T00:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.