Quantile Online Learning for Semiconductor Failure Analysis
- URL: http://arxiv.org/abs/2303.07062v1
- Date: Mon, 13 Mar 2023 12:34:17 GMT
- Title: Quantile Online Learning for Semiconductor Failure Analysis
- Authors: Bangjian Zhou, Pan Jieming, Maheswari Sivan, Aaron Voon-Yew Thean, J.
Senthilnath
- Abstract summary: This paper focuses on novel quantile online learning for semiconductor failure analysis.
The proposed method is applied to semiconductor device-level defects: FinFET bridge defect, GAA-FET bridge defect, GAA-FET dislocation defect, and a public database: SECOM.
Our proposed method achieved an overall accuracy of 86.66% and compared with the second-best existing method it improves 15.50% on the GAA-FET dislocation defect dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With high device integration density and evolving sophisticated device
structures in semiconductor chips, detecting defects becomes elusive and
complex. Conventionally, machine learning (ML)-guided failure analysis is
performed with offline batch mode training. However, the occurrence of new
types of failures or changes in the data distribution demands retraining the
model. During the manufacturing process, detecting defects in a single-pass
online fashion is more challenging and favoured. This paper focuses on novel
quantile online learning for semiconductor failure analysis. The proposed
method is applied to semiconductor device-level defects: FinFET bridge defect,
GAA-FET bridge defect, GAA-FET dislocation defect, and a public database:
SECOM. From the obtained results, we observed that the proposed method is able
to perform better than the existing methods. Our proposed method achieved an
overall accuracy of 86.66% and compared with the second-best existing method it
improves 15.50% on the GAA-FET dislocation defect dataset.
Related papers
- YOLO-pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images [7.368447690189973]
This paper proposes a high-precision, robust, and real-time end-to-end method for PCB defect detection based on CNN.
We propose a novel approach combining YOLOv5 and multiscale modules for hierarchical residual-like connections.
Experiments on a large-scale PCB dataset demonstrate significant improvements in precision, recall, and F1-score compared to existing methods.
arXiv Detail & Related papers (2024-07-22T07:08:22Z) - An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection [0.11184789007828977]
This work introduces a task-agnostic, meta-learning approach to semiconductor defect inspection.
It enables the incremental addition of new defect classes and scales to create a more robust and generalized model.
We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI.
arXiv Detail & Related papers (2024-07-17T16:41:22Z) - Accurate and Reliable Predictions with Mutual-Transport Ensemble [46.368395985214875]
We propose a co-trained auxiliary model and adaptively regularizes the cross-entropy loss using Kullback-Leibler (KL)
We show that MTE can simultaneously enhance both accuracy and uncertainty calibration.
For example, on the CIFAR-100 dataset, our MTE method on ResNet34/50 achieved significant improvements compared to previous state-of-the-art method.
arXiv Detail & Related papers (2024-05-30T03:15:59Z) - Continual learning for surface defect segmentation by subnetwork
creation and selection [55.2480439325792]
We introduce a new continual (or lifelong) learning algorithm that performs segmentation tasks without undergoing catastrophic forgetting.
The method is applied to two different surface defect segmentation problems that are learned incrementally.
Our approach shows comparable results with joint training when all the training data (all defects) are seen simultaneously.
arXiv Detail & Related papers (2023-12-08T15:28:50Z) - A Reusable AI-Enabled Defect Detection System for Railway Using
Ensembled CNN [5.381374943525773]
Defect detection is crucial for ensuring the trustworthiness of railway systems.
Current approaches rely on single deep-learning models, like CNNs.
We propose a reusable AI-enabled defect detection approach.
arXiv Detail & Related papers (2023-11-24T19:45:55Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
This work is the first demonstration to accurately detect and precisely segment semiconductor defect patterns by using a diffusion model.
Our proposed approach outperforms previous work on overall mAP and performs comparatively better or as per for almost all defect classes.
arXiv Detail & Related papers (2023-07-17T17:53:36Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
This paper proposes a new knowledge distillation network, called Dual Knowledge Align Network (DKAN)
The proposed DKAN method follows a pretraining-finetuning transfer learning paradigm and a knowledge distillation framework is designed for fine-tuning.
Experiments have been conducted on the incremental Few-shot NEU-DET dataset and results show that DKAN outperforms other methods on various few-shot scenes.
arXiv Detail & Related papers (2022-09-01T15:08:44Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
We present a framework for the reliability analysis of Conal Neural Networks (CNNs) via an error simulation engine.
These error models are defined based on the corruption patterns of the output of the CNN operators induced by faults.
We show that our methodology achieves about 99% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up to 63x w.r.t.FI, that only implements a limited set of error models.
arXiv Detail & Related papers (2022-06-04T19:45:02Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.