論文の概要: Supervised Feature Selection with Neuron Evolution in Sparse Neural
Networks
- arxiv url: http://arxiv.org/abs/2303.07200v1
- Date: Fri, 10 Mar 2023 17:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 14:14:53.837320
- Title: Supervised Feature Selection with Neuron Evolution in Sparse Neural
Networks
- Title(参考訳): スパースニューラルネットワークにおけるニューロン進化による特徴選択の監督
- Authors: Zahra Atashgahi, Xuhao Zhang, Neil Kichler, Shiwei Liu, Lu Yin, Mykola
Pechenizkiy, Raymond Veldhuis, Decebal Constantin Mocanu
- Abstract要約: NeuroFSはスパースニューラルネットワークのトレーニングプロセスで動的ニューロンの進化を導入し、情報的特徴セットを見つける。
NeuroFSは、最先端の教師付き特徴選択モデルの中で最上位のスコアを達成している。
- 参考スコア(独自算出の注目度): 17.12834153477201
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes a novel supervised feature selection method named
NeuroFS. NeuroFS introduces dynamic neuron evolution in the training process of
a sparse neural network to find an informative set of features. By evaluating
NeuroFS on real-world benchmark datasets, we demonstrated that it achieves the
highest ranking-based score among the considered state-of-the-art supervised
feature selection models. However, due to the general lack of knowledge on
optimally implementing sparse neural networks during training, NeuroFS does not
take full advantage of its theoretical high computational and memory
advantages. We let the development of this challenging research direction for
future work, hopefully, in a greater joint effort of the community.
- Abstract(参考訳): 本稿ではニューロFSと呼ばれる新しい教師付き特徴選択法を提案する。
NeuroFSはスパースニューラルネットワークのトレーニングプロセスにおいて動的ニューロン進化を導入し、情報的特徴セットを見つける。
実世界のベンチマークデータセットでneurofsを評価することで、最先端の教師付き特徴選択モデルの中で最高のランキングスコアを達成できることを実証した。
しかし、トレーニング中にスパースニューラルネットワークを最適に実装する知識が不足しているため、NeuroFSはその理論的に高い計算とメモリの利点を十分に活用していない。
我々は、この挑戦的な研究の方向性の開発を、願わくば、コミュニティのより大きな共同作業に委ねる。
関連論文リスト
- RelChaNet: Neural Network Feature Selection using Relative Change Scores [0.0]
本稿では、ニューラルネットワークの入力層にニューロンのプルーニングと再成長を利用する、新しくて軽量な特徴選択アルゴリズムであるRelChaNetを紹介する。
我々の手法は一般に現在の最先端手法よりも優れており、特にMNISTデータセットの平均精度を2%向上させる。
論文 参考訳(メタデータ) (2024-10-03T09:56:39Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
スパースニューラルネットワーク(SNN)は、効率的な特徴選択のための強力なツールとして登場した。
動的スパーストレーニング(DST)アルゴリズムで訓練されたSNNは、平均して50%以上のメモリと55%以上のFLOPを削減できることを示す。
以上の結果から,DSTアルゴリズムで訓練したSNNによる特徴選択は,平均して50ドル以上のメモリと55%のFLOPを削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-08T16:48:33Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
我々は新しい階層型融合量子ファジィニューラルネットワーク(HQFNN)を提案した。
HQFNNは量子ニューラルネットワークを使用してファジィニューラルネットワークのファジィメンバシップ関数を学習する。
その結果,提案手法は既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-03-14T12:09:36Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
データサイエンティストは通常、データセットにできるだけ多くの機能を集め、既存の機能から新しい機能を設計する。
既存のタブ形式の特徴選択のためのベンチマークでは、古典的な下流モデル、おもちゃの合成データセット、あるいは下流のパフォーマンスに基づいて特徴セレクタを評価していない。
変換器を含む下流ニューラルネットワーク上で評価された課題のある特徴選択ベンチマークを構築した。
また,従来の特徴選択法よりも高い性能を有するニューラルネットワークのための,Lassoのインプット・グラディエント・ベース・アナログも提案する。
論文 参考訳(メタデータ) (2023-11-10T05:26:10Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork(CHN)は、ベースモデルを新機能に拡張するためのパラメータを生成する。
予測時、CHNはニューラルネットワークを通る単一のフォワードパスのみを必要とし、大幅なスピードアップをもたらす。
本システムでは,既存のインプテーションやメタラーニングベースラインよりも,新しい特徴のマイズショット学習性能が向上することを示す。
論文 参考訳(メタデータ) (2021-04-12T23:19:49Z) - Feature Selection Based on Sparse Neural Network Layer with Normalizing
Constraints [0.0]
本論文では,2つの制約を導入したニューラルネットワークに基づく特徴選択手法を提案する。
その結果,Sparse Neural Network Layer with Normalizing Constraints (SNEL-FS) に基づく特徴選択は,従来の FS 方式に比べて重要な特徴の選択が可能であり,優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2020-12-11T14:14:33Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。