論文の概要: Are Models Trained on Indian Legal Data Fair?
- arxiv url: http://arxiv.org/abs/2303.07247v3
- Date: Tue, 14 May 2024 08:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 20:09:59.368909
- Title: Are Models Trained on Indian Legal Data Fair?
- Title(参考訳): モデルはインドの法律データフェアで訓練されているか?
- Authors: Sahil Girhepuje, Anmol Goel, Gokul S Krishnan, Shreya Goyal, Satyendra Pandey, Ponnurangam Kumaraguru, Balaraman Ravindran,
- Abstract要約: 法律分野におけるインドの観点からの公正性に関する最初の調査を提示する。
本研究では、保釈予測タスクのために訓練された決定木モデルにおいて、ヒンドゥー教とムスリムに関連する入力特徴間の全体的な公平性格差が0.237であることを示す。
- 参考スコア(独自算出の注目度): 20.162205920441895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances and applications of language technology and artificial intelligence have enabled much success across multiple domains like law, medical and mental health. AI-based Language Models, like Judgement Prediction, have recently been proposed for the legal sector. However, these models are strife with encoded social biases picked up from the training data. While bias and fairness have been studied across NLP, most studies primarily locate themselves within a Western context. In this work, we present an initial investigation of fairness from the Indian perspective in the legal domain. We highlight the propagation of learnt algorithmic biases in the bail prediction task for models trained on Hindi legal documents. We evaluate the fairness gap using demographic parity and show that a decision tree model trained for the bail prediction task has an overall fairness disparity of 0.237 between input features associated with Hindus and Muslims. Additionally, we highlight the need for further research and studies in the avenues of fairness/bias in applying AI in the legal sector with a specific focus on the Indian context.
- Abstract(参考訳): 言語技術と人工知能の最近の進歩と応用は、法律、医療、精神保健といった複数の領域で大きな成功を収めている。
AIベースの言語モデル、例えば判断予測は、最近法分野に提案されている。
しかし、これらのモデルは、トレーニングデータから取り出された社会的バイアスが符号化されている。
偏見と公平性はNLP全体で研究されているが、ほとんどの研究は主に西洋の文脈にある。
本研究は,インド法域における公正性に関する最初の調査である。
我々は,ヒンディー語法文書で訓練されたモデルに対する保留予測タスクにおける学習アルゴリズムバイアスの伝播に注目した。
本研究は, 人口統計値を用いたフェアネスギャップの評価を行い, 保釈予測タスクで訓練された決定木モデルが, ヒンドゥー教とムスリムの入力特徴間の全体的なフェアネスギャップが0.237であることを示す。
さらに、我々は、インドの文脈に特化して、法律分野にAIを適用する際に、公正さ/バイアスの道でさらなる研究と研究の必要性を強調します。
関連論文リスト
- Auditing for Racial Discrimination in the Delivery of Education Ads [50.37313459134418]
本稿では,教育機会のための広告配信において,人種的偏見を評価できる新たな第三者監査手法を提案する。
メタのアルゴリズムによる教育機会の広告配信における人種差別の証拠を見つけ、法的および倫理的懸念を訴える。
論文 参考訳(メタデータ) (2024-06-02T02:00:55Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の判断と神経モデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
論文 参考訳(メタデータ) (2024-03-25T15:15:41Z) - Convolutional Neural Networks can achieve binary bail judgement
classification [0.5013868868152144]
我々は,ヒンディー語法文書のコーパス上に,畳み込みニューラルネットワーク(CNN)アーキテクチャをデプロイする。
我々はCNNモデルの助けを借りて保釈予測を行い、全体的な精度は93%である。
論文 参考訳(メタデータ) (2024-01-25T12:31:41Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Legal Question-Answering in the Indian Context: Efficacy, Challenges,
and Potential of Modern AI Models [3.552993426200889]
法的なQAプラットフォームは、法の専門家が法学的な文書を扱う方法を変えることを約束する。
本論文では,OpenAI GPTモデルを基準点として,検索とQA機構の配列をゼロとする。
本研究の根拠は、その複雑な性質と関連する論理的制約によって区別される、インドの刑事法的な景観と結びついている。
論文 参考訳(メタデータ) (2023-09-26T07:56:55Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Pre-trained Language Models for the Legal Domain: A Case Study on Indian
Law [7.366081387295463]
私たちは、インドの法律データに基づいて、人気のある2つの法的PLM(LegalBERTとCaseLawBERT)を再訓練し、インドの法文に基づく語彙でモデルをゼロからトレーニングします。
我々は,新たなドメイン(インド文)の性能向上だけでなく,原ドメイン(ヨーロッパ文,イギリス文)の性能向上にも留意する。
論文 参考訳(メタデータ) (2022-09-13T15:01:11Z) - Decoding Demographic un-fairness from Indian Names [4.402336973466853]
デモグラフィック分類は、レコメンデーションシステムにおける公正度評価や、オンラインネットワークや投票システムにおける意図しない偏見の測定に不可欠である。
我々は3つの公開データセットを収集し、性別分類とキャスト分類の領域で最先端の分類器を訓練する。
上記のモデルの有効性を理解するために、クロステスト(異なるデータセットでのトレーニングとテスト)を実施します。
論文 参考訳(メタデータ) (2022-09-07T11:54:49Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - Re-imagining Algorithmic Fairness in India and Beyond [9.667710168953239]
アルゴリズムの公平性を分離し、インドのaiパワーを分析します。
社会経済的要因によってデータが必ずしも信頼できるとは限らない。
データとモデルの再コンテキスト化、抑圧されたコミュニティの強化、Fair-MLエコシステムの実現のためのロードマップを提供します。
論文 参考訳(メタデータ) (2021-01-25T10:20:57Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。