論文の概要: Fast exploration and learning of latent graphs with aliased observations
- arxiv url: http://arxiv.org/abs/2303.07397v2
- Date: Tue, 21 Mar 2023 03:27:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 22:49:59.332039
- Title: Fast exploration and learning of latent graphs with aliased observations
- Title(参考訳): エイリアス付き観測による潜在グラフの高速探索と学習
- Authors: Miguel Lazaro-Gredilla, Ishan Deshpande, Sivaramakrishnan Swaminathan,
Meet Dave, Dileep George
- Abstract要約: 探索効率をほぼ最大化する政策を提供する。
未利用例では,最先端の強化学習ベースラインの性能向上が見られた。
エイリアス化の場合、適切なベースラインを意識せず、代わりに様々なトポロジに対するランダムなポリシーw.r.t.を高速にリカバリし、挑戦するトポロジに対するランダムなポリシーよりも指数関数的に高速なリカバリを示す。
- 参考スコア(独自算出の注目度): 3.2975215259331545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consider this scenario: an agent navigates a latent graph by performing
actions that take it from one node to another. The chosen action determines the
probability distribution over the next visited node. At each node, the agent
receives an observation, but this observation is not unique, so it does not
identify the node, making the problem aliased. The purpose of this work is to
provide a policy that approximately maximizes exploration efficiency (i.e., how
well the graph is recovered for a given exploration budget). In the unaliased
case, we show improved performance w.r.t. state-of-the-art reinforcement
learning baselines. For the aliased case we are not aware of suitable baselines
and instead show faster recovery w.r.t. a random policy for a wide variety of
topologies, and exponentially faster recovery than a random policy for
challenging topologies. We dub the algorithm eFeX (from eFficient eXploration).
- Abstract(参考訳): エージェントは、あるノードから別のノードにアクションを実行することによって、潜在グラフをナビゲートします。
選択された動作は、次の訪問ノード上の確率分布を決定する。
各ノードにおいて、エージェントは観測を受けるが、この観測は一意ではないため、ノードを識別せず、問題をエイリアスする。
この研究の目的は、探索効率をほぼ最大化する政策を提供することである(すなわち、与えられた探索予算に対してグラフがどの程度回復できるか)。
未利用例では,最先端の強化学習ベースラインの性能向上が見られた。
エイリアス化の場合、適切なベースラインを意識せず、代わりに様々なトポロジに対するランダムなポリシーw.r.t.を高速にリカバリし、挑戦するトポロジに対するランダムなポリシーよりも指数関数的に高速なリカバリを示す。
アルゴリズムeFeX(eFficient eXploration)をダブする。
関連論文リスト
- Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Scalable Multi-agent Covering Option Discovery based on Kronecker Graphs [49.71319907864573]
本稿では,分解が容易なマルチエージェントスキル発見法を提案する。
我々のキーとなる考え方は、合同状態空間をクロネッカーグラフとして近似することであり、そのフィドラーベクトルを直接見積もることができる。
ラプラシアンスペクトルを直接計算することは、無限大の状態空間を持つタスクには難易度が高いことを考慮し、さらに本手法の深層学習拡張を提案する。
論文 参考訳(メタデータ) (2023-07-21T14:53:12Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Joint graph learning from Gaussian observations in the presence of
hidden nodes [26.133725549667734]
本稿では,隠れ変数の存在を考慮した共同グラフ学習法を提案する。
従来の考察から得られた構造を利用して凸最適化問題を提案する。
提案したアルゴリズムを異なるベースラインで比較し、合成グラフと実世界のグラフ上での性能を評価する。
論文 参考訳(メタデータ) (2022-12-04T13:03:41Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
グラフに基づく相対的制約のない最小二乗重要度フィッティング(GRULSIF)
我々はこの考え方を、グラフベースの相対的非制約最小二乗重要度フィッティング(GRULSIF)と呼ばれる具体的な非パラメトリック手法で開発する。
我々は、ノード当たりの観測回数、グラフのサイズ、およびグラフ構造がタスク間の類似性をどの程度正確にエンコードしているかといった変数が果たす役割を強調する、協調的なアプローチの収束率を導出する。
論文 参考訳(メタデータ) (2022-05-28T15:37:03Z) - Learning Expanding Graphs for Signal Interpolation [14.84852576248587]
本稿では,特定のノードの確率と接続性によってパラメータ化された入ってくるノードに対するアタッチメントモデルを提案する。
コールドスタートのコラボレーティブレコメンデーションにおける実際のデータ処理について検討する。
論文 参考訳(メタデータ) (2022-03-15T14:51:29Z) - Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling [0.456877715768796]
我々は,スキップグラム埋め込み手法が行列分解を暗黙的に行うという事実に基づいて構築する。
負のサンプリングを持つ高次スキップグラムは、ノードと時間の役割を乱すことができることを示す。
提案手法を時間分解型対面近接データを用いて実証的に評価し,学習した時間変化グラフ表現が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-25T12:04:48Z) - Learning Representations using Spectral-Biased Random Walks on Graphs [18.369974607582584]
このプロセスにおける確率バイアスが、プロセスによって選択されたノードの品質にどの程度影響するかを調査する。
我々は、この近傍を正規化ラプラス行列として表されるノードの近傍部分グラフのスペクトルに基づく確率測度として簡潔に捉えた。
我々は,様々な実世界のデータセット上で,最先端ノード埋め込み技術に対する我々のアプローチを実証的に評価した。
論文 参考訳(メタデータ) (2020-05-19T20:42:43Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。