SuperMask: Generating High-resolution object masks from multi-view,
unaligned low-resolution MRIs
- URL: http://arxiv.org/abs/2303.07517v1
- Date: Mon, 13 Mar 2023 23:09:51 GMT
- Title: SuperMask: Generating High-resolution object masks from multi-view,
unaligned low-resolution MRIs
- Authors: Hanxue Gu, Hongyu He, Roy Colglazier, Jordan Axelrod, Robert French,
Maciej A Mazurowski
- Abstract summary: High-resolution isotropic MRIs are rare and typical MRIs are anisotropic, with the out-of-plane dimension having a much lower resolution.
We propose a weakly-supervised deep learning-based solution to generate high-resolution masks from multiple low-resolution images.
- Score: 0.8074019565026543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Three-dimensional segmentation in magnetic resonance images (MRI), which
reflects the true shape of the objects, is challenging since high-resolution
isotropic MRIs are rare and typical MRIs are anisotropic, with the out-of-plane
dimension having a much lower resolution. A potential remedy to this issue lies
in the fact that often multiple sequences are acquired on different planes.
However, in practice, these sequences are not orthogonal to each other,
limiting the applicability of many previous solutions to reconstruct
higher-resolution images from multiple lower-resolution ones. We propose a
weakly-supervised deep learning-based solution to generating high-resolution
masks from multiple low-resolution images. Our method combines segmentation and
unsupervised registration networks by introducing two new regularizations to
make registration and segmentation reinforce each other. Finally, we introduce
a multi-view fusion method to generate high-resolution target object masks. The
experimental results on two datasets show the superiority of our methods.
Importantly, the advantage of not using high-resolution images in the training
process makes our method applicable to a wide variety of MRI segmentation
tasks.
Related papers
- Learning Two-factor Representation for Magnetic Resonance Image Super-resolution [1.294284364022674]
We propose a novel method for MR image super-resolution based on two-factor representation.
Specifically, we factorize intensity signals into a linear combination of learnable basis and coefficient factors.
Our method achieves state-of-the-art performance, providing superior visual fidelity and robustness.
arXiv Detail & Related papers (2024-09-15T13:32:24Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
Multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality.
radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale.
We propose an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet.
arXiv Detail & Related papers (2023-07-05T14:43:26Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Flexible Alignment Super-Resolution Network for Multi-Contrast MRI [7.727046305845654]
Super-Resolution plays a crucial role in preprocessing the low-resolution images for more precise medical analysis.
We propose the Flexible Alignment Super-Resolution Network (FASR-Net) for multi-contrast magnetic resonance images Super-Resolution.
arXiv Detail & Related papers (2022-10-07T11:07:20Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Single MR Image Super-Resolution using Generative Adversarial Network [0.696125353550498]
Real Enhanced Super Resolution Generative Adrial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images.
In this paper, we apply this method to enhance the spatial resolution of 2D MR images.
arXiv Detail & Related papers (2022-07-16T23:15:10Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
Cross-resolution person re-identification problem aims to match low-resolution (LR) query identity images against high resolution (HR) gallery images.
It is a challenging and practical problem since the query images often suffer from resolution degradation due to the different capturing conditions from real-world cameras.
This paper explores an alternative SR-free paradigm to directly compare HR and LR images via a dynamic metric, which is adaptive to the resolution of a query image.
arXiv Detail & Related papers (2022-07-09T03:49:51Z) - Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes
for Medical Image Super-Resolution [56.622832383316215]
We propose a novel multi-head convolutional attention module to super-resolve CT and MRI scans.
Our attention module uses the convolution operation to perform joint spatial-channel attention on multiple input tensors.
We introduce multiple attention heads, each head having a distinct receptive field size corresponding to a particular reduction rate for the spatial attention.
arXiv Detail & Related papers (2022-04-08T07:56:55Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution [3.0554209431226624]
Single image super-resolution aims to obtain a high-resolution output from one low-resolution image.
Deep learning-based SISR approaches have been widely discussed in medical image processing.
We propose an approach for medical image arbitrary-scale super-resolution (MIASSR)
arXiv Detail & Related papers (2021-05-22T14:24:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.