論文の概要: Cross-lingual Alzheimer's Disease detection based on paralinguistic and
pre-trained features
- arxiv url: http://arxiv.org/abs/2303.07650v1
- Date: Tue, 14 Mar 2023 06:34:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 16:17:13.007191
- Title: Cross-lingual Alzheimer's Disease detection based on paralinguistic and
pre-trained features
- Title(参考訳): パラ言語的および事前訓練された特徴に基づく言語横断性アルツハイマー病の検出
- Authors: Xuchu Chen, Yu Pu, Jinpeng Li, Wei-Qiang Zhang
- Abstract要約: 本稿ではICASSP-SPGC-2023 ADReSS-M Challenge Taskについて述べる。
この課題は、アルツハイマー病の予測のために、どの音響特徴を一般化し、言語間で伝達できるかを検討することである。
我々は、openSmileツールキットとXLSR-53を用いた音響特性を用いてパラ言語的特徴を抽出する。
本手法は分類タスクの69.6%の精度と回帰タスクの4.788の根平均二乗誤差(RMSE)を実現する。
- 参考スコア(独自算出の注目度): 6.928826160866143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present our submission to the ICASSP-SPGC-2023 ADReSS-M Challenge Task,
which aims to investigate which acoustic features can be generalized and
transferred across languages for Alzheimer's Disease (AD) prediction. The
challenge consists of two tasks: one is to classify the speech of AD patients
and healthy individuals, and the other is to infer Mini Mental State
Examination (MMSE) score based on speech only. The difficulty is mainly
embodied in the mismatch of the dataset, in which the training set is in
English while the test set is in Greek. We extract paralinguistic features
using openSmile toolkit and acoustic features using XLSR-53. In addition, we
extract linguistic features after transcribing the speech into text. These
features are used as indicators for AD detection in our method. Our method
achieves an accuracy of 69.6% on the classification task and a root mean
squared error (RMSE) of 4.788 on the regression task. The results show that our
proposed method is expected to achieve automatic multilingual Alzheimer's
Disease detection through spontaneous speech.
- Abstract(参考訳): 本稿では,アルツハイマー病(AD)予測のための言語間での音響的特徴の一般化と伝達を目的とし,ICASSP-SPGC-2023 ADReSS-M Challenge Taskを提案する。
課題は、ad患者と健常者の発話を分類し、もう1つは、発話のみに基づいてミニ精神状態検査(mmse)スコアを推測することである。
この困難は、テストセットがギリシア語である間、トレーニングセットが英語であるデータセットのミスマッチに主に具体化されている。
我々は,opensmile toolkitを用いたパラ言語特徴とxlsr-53を用いた音響特徴を抽出する。
さらに,音声をテキストに書き起こした後の言語的特徴を抽出する。
これらの特徴をAD検出の指標として用いた。
本手法は分類タスクの69.6%の精度と回帰タスクの4.788の根平均二乗誤差(RMSE)を実現する。
以上の結果から,本手法は自然発声による多言語性アルツハイマー病の自動検出を実現することが期待される。
関連論文リスト
- Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Multilingual Alzheimer's Dementia Recognition through Spontaneous
Speech: a Signal Processing Grand Challenge [18.684024762601215]
この信号処理グランドチャレンジ(SPGC)は、社会的・医療的関連性の難しい自動予測問題をターゲットにしている。
チャレンジは、ある言語(英語)における音声に基づいて構築された予測モデルが、他の言語(ギリシャ語)に一般化する程度を評価するように設計されている。
論文 参考訳(メタデータ) (2023-01-13T14:09:13Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
アルツハイマー病(AD)の早期診断は予防ケアの促進とさらなる進行の遅らせに不可欠である。
本稿では,AD分類誤差をトレーニング対象関数として一貫して用いたPLMの高速微調整法について検討する。
論文 参考訳(メタデータ) (2022-10-29T09:18:41Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Exploiting Cross-domain And Cross-Lingual Ultrasound Tongue Imaging
Features For Elderly And Dysarthric Speech Recognition [55.25565305101314]
調音機能は音響信号歪みに不変であり、音声認識システムにうまく組み込まれている。
本稿では,A2Aモデルにおける24時間TaLコーパスの並列音声・超音波舌画像(UTI)データを利用したクロスドメインおよびクロスランガルA2Aインバージョン手法を提案する。
生成した調音機能を組み込んだ3つのタスクの実験は、ベースラインのTDNNとコンフォーマーASRシステムより一貫して優れていた。
論文 参考訳(メタデータ) (2022-06-15T07:20:28Z) - Influence of ASR and Language Model on Alzheimer's Disease Detection [2.4698886064068555]
画像から参加者の音声記述を転写するために,SotA ASRシステムを用いて分析する。
本研究では,ASRから仮説を復号化するための言語モデルが欠如していることから,単語の非標準列を補正する言語モデルの影響について検討する。
提案システムは、韻律と声質に基づく音響と、最も一般的な単語の最初の出現に基づく語彙的特徴を組み合わせる。
論文 参考訳(メタデータ) (2021-09-20T10:41:39Z) - Explainable Identification of Dementia from Transcripts using
Transformer Networks [0.0]
アルツハイマー病(英語: Alzheimer's disease, AD)は、認知症の主要な原因であり、記憶喪失を伴い、時間通りに診断されない場合の日常生活に深刻な結果をもたらす可能性がある。
本稿では,2つのマルチタスク学習モデルを紹介し,主課題は認知症(バイナリ分類)の同定であり,補助課題は認知症の重症度(マルチクラス分類)の同定に対応する。
マルチタスク学習環境におけるAD患者検出の精度は84.99%である。
論文 参考訳(メタデータ) (2021-09-14T21:49:05Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z) - Combining Prosodic, Voice Quality and Lexical Features to Automatically
Detect Alzheimer's Disease [0.0]
本稿では,自然発話からアルツハイマーの自動検出を改善することを目的としたADReSS Challengeへの貢献である。
年齢、性別、AD状態の108人の記録がトレーニングセットとして使用されている。
どちらのタスクも、韻律と声質に基づく音声から28の特徴を抽出する。
論文 参考訳(メタデータ) (2020-11-18T13:37:27Z) - The NTT DCASE2020 Challenge Task 6 system: Automated Audio Captioning
with Keywords and Sentence Length Estimation [49.41766997393417]
本報告では, 音響シーン・イベントの検出・分類に関わるシステムについて述べる。
本論文は,音声の自動字幕化における2つの不確定性,すなわち,単語選択不確定性と文長不確定性に焦点をあてる。
マルチタスク学習によりキーワードと文長を推定することにより,主字幕生成と部分不確定化を同時に解決する。
論文 参考訳(メタデータ) (2020-07-01T04:26:27Z) - Alzheimer's Dementia Recognition through Spontaneous Speech: The ADReSS
Challenge [10.497861245133086]
InterSPEECH 2020のADReSS Challengeでは、アルツハイマー認知症の自動認識に対する異なるアプローチを比較可能な共有タスクを定義している。
ADReSSは、年齢と性別の面で音響的に前処理されバランスが取れた、ベンチマーク音声データセットを研究者に提供する。
論文 参考訳(メタデータ) (2020-04-14T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。