論文の概要: ForDigitStress: A multi-modal stress dataset employing a digital job
interview scenario
- arxiv url: http://arxiv.org/abs/2303.07742v1
- Date: Tue, 14 Mar 2023 09:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:38:31.164073
- Title: ForDigitStress: A multi-modal stress dataset employing a digital job
interview scenario
- Title(参考訳): ForDigitStress: ディジタル面接シナリオを用いたマルチモーダルストレスデータセット
- Authors: Alexander Heimerl, Pooja Prajod, Silvan Mertes, Tobias Baur, Matthias
Kraus, Ailin Liu, Helen Risack, Nicolas Rohleder, Elisabeth Andr\'e, Linda
Becker
- Abstract要約: 本稿では,デジタル面接を利用してストレスを誘発するマルチモーダルストレスデータセットを提案する。
このデータセットは、オーディオ、ビデオ、生理情報を含む40人の参加者のマルチモーダルデータを提供する。
ベースラインを確立するために、5つの異なる機械学習分類器が訓練され、評価されている。
- 参考スコア(独自算出の注目度): 48.781127275906435
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a multi-modal stress dataset that uses digital job interviews to
induce stress. The dataset provides multi-modal data of 40 participants
including audio, video (motion capturing, facial recognition, eye tracking) as
well as physiological information (photoplethysmography, electrodermal
activity). In addition to that, the dataset contains time-continuous
annotations for stress and occurred emotions (e.g. shame, anger, anxiety,
surprise). In order to establish a baseline, five different machine learning
classifiers (Support Vector Machine, K-Nearest Neighbors, Random Forest,
Long-Short-Term Memory Network) have been trained and evaluated on the proposed
dataset for a binary stress classification task. The best-performing classifier
achieved an accuracy of 88.3% and an F1-score of 87.5%.
- Abstract(参考訳): 本稿では,デジタル面接を用いてストレスを誘発するマルチモーダルストレスデータセットを提案する。
このデータセットは、オーディオ、ビデオ(モーションキャプチャ、顔認識、アイトラッキング)、生理情報(フォトプレチモグラフィ、電極活動)を含む40人の参加者のマルチモーダルデータを提供する。
それに加えてデータセットには、ストレスと発生した感情(恥、怒り、不安、驚きなど)に対する時系列アノテーションが含まれている。
ベースラインを確立するために,提案する2元応力分類タスクのデータセット上で,5つの異なる機械学習分類器(サポートベクターマシン,k-ネアレスト近傍,ランダムフォレスト,長期記憶ネットワーク)を訓練し,評価した。
最高の性能の分類器は88.3%の精度と87.5%のF1スコアを達成した。
関連論文リスト
- MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
このデータセットには、スキーマ図、シミュレーション画像、マクロ/顕微鏡写真、実験的可視化などの図が含まれている。
我々は,6つのプロプライエタリモデルと10以上のオープンソースモデルを評価し,科学的フィギュアキャプションと複数選択質問のベンチマークを開発した。
データセットとベンチマークは、さらなる研究をサポートするためにリリースされる予定だ。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - Personalization of Stress Mobile Sensing using Self-Supervised Learning [1.7598252755538808]
ストレスは様々な健康問題への主要な貢献者として広く認められている。
リアルタイムのストレス予測は、デジタル介入がストレスの開始時に即座に反応し、心臓のリズム不規則性のような多くの心理的、生理的症状を避けるのに役立つ。
しかし、機械学習を用いたストレス予測の主な課題は、ラベルの主観性とスパース性、大きな特徴空間、比較的少ないラベル、特徴と結果の間の複雑な非線形および主観的関係である。
論文 参考訳(メタデータ) (2023-08-04T22:26:33Z) - The MuSe 2023 Multimodal Sentiment Analysis Challenge: Mimicked
Emotions, Cross-Cultural Humour, and Personalisation [69.13075715686622]
MuSe 2023は、現代の3つの異なるマルチモーダル感情と感情分析の問題に対処する共有タスクの集合である。
MuSe 2023は、さまざまな研究コミュニティから幅広いオーディエンスを集めようとしている。
論文 参考訳(メタデータ) (2023-05-05T08:53:57Z) - Transfer Learning Based Diagnosis and Analysis of Lung Sound Aberrations [0.35232085374661276]
本研究は、聴診器と音声記録ソフトウェアによって得られた呼吸音を非侵襲的に識別する手法を開発することを目的とする。
各オーディオサンプルの視覚的表現が構築され、視覚を効果的に記述するために使用されるような方法を用いて、分類のためのリソース識別が可能である。
呼吸音響データベースは、95%の精度、88%の精度、86%のリコールスコア、81%のF1スコアを含む最先端の結果を得た。
論文 参考訳(メタデータ) (2023-03-15T04:46:57Z) - Extracting Digital Biomarkers for Unobtrusive Stress State Screening
from Multimodal Wearable Data [0.0]
携帯電話やスマートウォッチから収集したデータを調べることで,ストレスモダリティに関連するデジタルバイオマーカーを探索する。
我々は,テッセルエデータセット,正確にはランダムフォレストを用いて,ストレスバイオマーカーの抽出を行う。
クラス不均衡を調整し、性格特性に関連する追加機能を追加することにより、クラス全体の精度を85%で達成できる。
論文 参考訳(メタデータ) (2023-03-08T10:14:58Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
異なるニューロンの活性化パターンの多様性は、モデル一般化と記憶の反映であることを示す。
重要なことは、情報組織が記憶の2つの形態を指していることである。
論文 参考訳(メタデータ) (2022-10-17T20:15:24Z) - Classification of Stress via Ambulatory ECG and GSR Data [0.0]
本研究は, 自己申告されたストレスアノテーションを用いた実験室で記録された生理的データを用いて, ストレスを検出するためのいくつかのアプローチを実験的に評価する。
最適応力検出法は90.77%の分類精度、91.24 F1-サブミッション、90.42感度、91.08特異性を達成する。
論文 参考訳(メタデータ) (2022-07-19T15:57:14Z) - ReLearn: A Robust Machine Learning Framework in Presence of Missing Data
for Multimodal Stress Detection from Physiological Signals [5.042598205771715]
マルチモーダル生理学的信号から抽出したバイオマーカーからのストレス検出のための堅牢な機械学習フレームワークであるReLearnを提案する。
ReLearnは、トレーニングと推論フェーズの両方において、欠落したデータと外れ値に効果的に対処する。
提案手法は,50%以上のサンプルが欠落している場合でも,86.8%のクロスバリデーション精度が得られることを示す。
論文 参考訳(メタデータ) (2021-04-29T11:53:01Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。