論文の概要: ForDigitStress: A multi-modal stress dataset employing a digital job
interview scenario
- arxiv url: http://arxiv.org/abs/2303.07742v1
- Date: Tue, 14 Mar 2023 09:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:38:31.164073
- Title: ForDigitStress: A multi-modal stress dataset employing a digital job
interview scenario
- Title(参考訳): ForDigitStress: ディジタル面接シナリオを用いたマルチモーダルストレスデータセット
- Authors: Alexander Heimerl, Pooja Prajod, Silvan Mertes, Tobias Baur, Matthias
Kraus, Ailin Liu, Helen Risack, Nicolas Rohleder, Elisabeth Andr\'e, Linda
Becker
- Abstract要約: 本稿では,デジタル面接を利用してストレスを誘発するマルチモーダルストレスデータセットを提案する。
このデータセットは、オーディオ、ビデオ、生理情報を含む40人の参加者のマルチモーダルデータを提供する。
ベースラインを確立するために、5つの異なる機械学習分類器が訓練され、評価されている。
- 参考スコア(独自算出の注目度): 48.781127275906435
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a multi-modal stress dataset that uses digital job interviews to
induce stress. The dataset provides multi-modal data of 40 participants
including audio, video (motion capturing, facial recognition, eye tracking) as
well as physiological information (photoplethysmography, electrodermal
activity). In addition to that, the dataset contains time-continuous
annotations for stress and occurred emotions (e.g. shame, anger, anxiety,
surprise). In order to establish a baseline, five different machine learning
classifiers (Support Vector Machine, K-Nearest Neighbors, Random Forest,
Long-Short-Term Memory Network) have been trained and evaluated on the proposed
dataset for a binary stress classification task. The best-performing classifier
achieved an accuracy of 88.3% and an F1-score of 87.5%.
- Abstract(参考訳): 本稿では,デジタル面接を用いてストレスを誘発するマルチモーダルストレスデータセットを提案する。
このデータセットは、オーディオ、ビデオ(モーションキャプチャ、顔認識、アイトラッキング)、生理情報(フォトプレチモグラフィ、電極活動)を含む40人の参加者のマルチモーダルデータを提供する。
それに加えてデータセットには、ストレスと発生した感情(恥、怒り、不安、驚きなど)に対する時系列アノテーションが含まれている。
ベースラインを確立するために,提案する2元応力分類タスクのデータセット上で,5つの異なる機械学習分類器(サポートベクターマシン,k-ネアレスト近傍,ランダムフォレスト,長期記憶ネットワーク)を訓練し,評価した。
最高の性能の分類器は88.3%の精度と87.5%のF1スコアを達成した。
関連論文リスト
- Machine Learning for Stress Monitoring from Wearable Devices: A
Systematic Literature Review [1.5293427903448025]
本研究の目的は,ウェアラブルデバイスを用いたストレス検出とモニタリングの現状について概観することである。
レビューされた作品は、公開されているストレスデータセット、機械学習、将来の研究方向性の3つのカテゴリにまとめられた。
論文 参考訳(メタデータ) (2022-09-29T23:40:38Z) - Classification of Stress via Ambulatory ECG and GSR Data [0.0]
本研究は, 自己申告されたストレスアノテーションを用いた実験室で記録された生理的データを用いて, ストレスを検出するためのいくつかのアプローチを実験的に評価する。
最適応力検出法は90.77%の分類精度、91.24 F1-サブミッション、90.42感度、91.08特異性を達成する。
論文 参考訳(メタデータ) (2022-07-19T15:57:14Z) - Hybrid Handcrafted and Learnable Audio Representation for Analysis of
Speech Under Cognitive and Physical Load [17.394964035035866]
音声におけるタスク負荷検出のための5つのデータセットを提案する。
音声記録は、ボランティアのコホートに認知的ストレスまたは身体的ストレスが引き起こされたとして収集された。
このデータセットを用いて、新たな自己教師型音声表現の設計と評価を行った。
論文 参考訳(メタデータ) (2022-03-30T19:43:21Z) - On Guiding Visual Attention with Language Specification [76.08326100891571]
注意をそらすのではなく,タスク関連機能に分類証拠を限定するためのアドバイスとして,ハイレベルな言語仕様を用いる。
この方法で空間的注意を監督することは、偏りのあるノイズのあるデータを用いた分類タスクの性能を向上させる。
論文 参考訳(メタデータ) (2022-02-17T22:40:19Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
心拍数(HR)と心拍変動率(HRV)に基づく日常生活ストレスレベルの客観的予測について検討する。
本稿では、ラベル付けのためのデータサンプルの調整可能なコレクションをサポートする、個人化されたストレス監視のための階層化システムアーキテクチャと、ラベル付けのためのリアルタイムデータのストリームから情報化サンプルを選択する方法を提案する。
論文 参考訳(メタデータ) (2021-07-31T04:15:15Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
精神状態は、先進医療に共通する国でも診断されていない。
人間の行動を監視するための有望なデータソースのひとつは、日々のスマートフォンの利用だ。
本研究では,自殺行動のリスクが高い青少年集団の移動行動のデータセットを用いて,日常生活の行動マーカーについて検討した。
論文 参考訳(メタデータ) (2021-06-24T17:46:03Z) - ReLearn: A Robust Machine Learning Framework in Presence of Missing Data
for Multimodal Stress Detection from Physiological Signals [5.042598205771715]
マルチモーダル生理学的信号から抽出したバイオマーカーからのストレス検出のための堅牢な機械学習フレームワークであるReLearnを提案する。
ReLearnは、トレーニングと推論フェーズの両方において、欠落したデータと外れ値に効果的に対処する。
提案手法は,50%以上のサンプルが欠落している場合でも,86.8%のクロスバリデーション精度が得られることを示す。
論文 参考訳(メタデータ) (2021-04-29T11:53:01Z) - Adaptive Self-training for Few-shot Neural Sequence Labeling [55.43109437200101]
ニューラルシークエンスラベリングモデルにおけるラベル不足問題に対処する手法を開発した。
自己学習は、大量のラベルのないデータから学ぶための効果的なメカニズムとして機能する。
メタラーニングは、適応的なサンプル再重み付けにおいて、ノイズのある擬似ラベルからのエラー伝播を軽減するのに役立つ。
論文 参考訳(メタデータ) (2020-10-07T22:29:05Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。