Weak entanglement improves quantum communication using only product measurements
- URL: http://arxiv.org/abs/2303.07907v3
- Date: Tue, 26 Mar 2024 09:41:36 GMT
- Title: Weak entanglement improves quantum communication using only product measurements
- Authors: Amélie Piveteau, Alastair A. Abbott, Sadiq Muhammad, Mohamed Bourennane, Armin Tavakoli,
- Abstract summary: We introduce a communication task corresponding to the cryptographic primitive known as secret sharing.
We show that all steerable two-qubit isotropic states provide a quantum advantage in the success rate using only product measurements.
We then consider a variant of secret sharing based on more sophisticated, yet standard, partial Bell state analysers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that weakly entangled states can improve communication over a qubit channel using only separate, interference-free, measurements of individual photons. We introduce a communication task corresponding to the cryptographic primitive known as secret sharing and show that all steerable two-qubit isotropic states provide a quantum advantage in the success rate using only product measurements. Furthermore, we show that such measurements can even reveal communication advantages from noisy partially entangled states that admit no quantum steering. We then go further and consider a stochastic variant of secret sharing based on more sophisticated, yet standard, partial Bell state analysers, and show that this reveals advantages also for a range of unsteerable isotropic states. By preparing polarisation qubits in unsteerable states, we experimentally demonstrate improved success rates of both secret sharing tasks beyond the best entanglement-unassisted qubit protocol. Our results reveal the capability of simple and scalable measurements in entanglement-assisted quantum communication to overcome large amounts of noise.
Related papers
- Quantum Advantage in Distributed Sensing with Noisy Quantum Networks [37.23288214515363]
We show that quantum advantage in distributed sensing can be achieved with noisy quantum networks.
We show that while entanglement is needed for this quantum advantage, genuine multipartite entanglement is generally unnecessary.
arXiv Detail & Related papers (2024-09-25T16:55:07Z) - Unextendible entanglement of quantum channels [4.079147243688764]
We study the ability of quantum channels to perform quantum communication tasks.
A quantum channel can distill a highly entangled state between two parties.
We generalize the formalism of $k$-extendibility to bipartite superchannels.
arXiv Detail & Related papers (2024-07-22T18:00:17Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Recovery of resource through sequential noisy measurements [0.22499166814992438]
We show that sequential applications of noisy measurements can mitigate the adverse impact of noise on quantum information processing tasks.
We demonstrate this in the case of concentrating entanglement on chosen nodes in quantum networks via noisy measurements performed by assisting qubits.
arXiv Detail & Related papers (2024-06-11T18:46:27Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Scalable entanglement certification via quantum communication [0.0]
We show that robust entanglement advantages are possible, but that they are limited by Einstein-Podolsky-Rosen steering.
This leads us to prove entanglement advantages from every entangled two-qubit Werner state, evidence its generalisation to high-dimensional systems and establish a connection to quantum teleportation.
arXiv Detail & Related papers (2024-01-01T15:57:08Z) - Entanglement-assisted quantum communication with simple measurements [0.0]
Dense coding is the seminal example of how entanglement can boost qubit communication.
We show that measurements enable strong and sometimes even optimal entanglement-assisted qubit communication protocols.
Our results reveal that there are scenarios in which the power of entanglement in enhancing quantum communication can be harvested in simple and scalable optical experiments.
arXiv Detail & Related papers (2022-05-19T14:47:38Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Efficient verification of entangled continuous-variable quantum states
with local measurements [0.9825966924601679]
We establish a systematic framework for verifying entangled continuous-variable quantum states by employing local measurements only.
Our protocol is able to achieve the unconditionally high verification efficiency which is quadratically better than quantum tomography.
arXiv Detail & Related papers (2021-03-30T11:59:03Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.