Tight One-Shot Analysis for Convex Splitting with Applications in
Quantum Information Theory
- URL: http://arxiv.org/abs/2304.12055v2
- Date: Thu, 4 May 2023 10:41:04 GMT
- Title: Tight One-Shot Analysis for Convex Splitting with Applications in
Quantum Information Theory
- Authors: Hao-Chung Cheng, Li Gao
- Abstract summary: We establish a one-shot error exponent and a one-shot strong converse for convex splitting with trace distance as an error criterion.
This leads to new one-shot exponent results in various tasks such as communication over quantum wiretap channels, secret key distillation, one-way quantum message compression, quantum measurement simulation, and quantum channel coding with side information at the transmitter.
- Score: 23.18400586573435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convex splitting is a powerful technique in quantum information theory used
in proving the achievability of numerous information-processing protocols such
as quantum state redistribution and quantum network channel coding. In this
work, we establish a one-shot error exponent and a one-shot strong converse for
convex splitting with trace distance as an error criterion. Our results show
that the derived error exponent (strong converse exponent) is positive if and
only if the rate is in (outside) the achievable region. This leads to new
one-shot exponent results in various tasks such as communication over quantum
wiretap channels, secret key distillation, one-way quantum message compression,
quantum measurement simulation, and quantum channel coding with side
information at the transmitter. We also establish a near-optimal one-shot
characterization of the sample complexity for convex splitting, which yields
matched second-order asymptotics. This then leads to stronger one-shot analysis
in many quantum information-theoretic tasks.
Related papers
- Quantum Channel Simulation in Fidelity is no more difficult than State Splitting [13.744740747451537]
We show that the quantum channel simulation can be directly achieved via quantum state splitting without using a technique known as the deFinetti reduction.
Using the bounds, we also recover the quantum reverse Shannon theorem in a much simpler way.
arXiv Detail & Related papers (2024-03-21T14:05:32Z) - Quantum soft-covering lemma with applications to rate-distortion coding, resolvability and identification via quantum channels [7.874708385247353]
We prove a one-shot quantum covering lemma in terms of smooth min-entropies.
We provide new upper bounds on the unrestricted and simultaneous identification capacities of quantum channels.
arXiv Detail & Related papers (2023-06-21T17:53:22Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Universal cost bound of quantum error mitigation based on quantum
estimation theory [0.0]
We present a unified approach to analyzing the cost of various quantum error mitigation methods on the basis of quantum estimation theory.
We derive for a generic layered quantum circuit under a wide class of Markovian noise that, unbiased estimation of an observable encounters an exponential growth with the circuit depth in the lower bound on the measurement cost.
Our results contribute to the understanding of the physical limitations of quantum error mitigation and offer a new criterion for evaluating the performance of quantum error mitigation techniques.
arXiv Detail & Related papers (2022-08-19T15:04:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Compact quantum kernel-based binary classifier [2.0684234025249717]
We present the simplest quantum circuit for constructing a kernel-based binary classifier.
The number of qubits is reduced by two and the number of steps is reduced linearly.
Our design also provides a straightforward way to handle an imbalanced data set.
arXiv Detail & Related papers (2022-02-04T14:30:53Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - One-shot quantum state redistribution and quantum Markov chains [15.66921140731163]
We revisit the task of quantum state redistribution in the one-shot setting.
We design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains.
Our result is the first to operationally connect quantum state redistribution and quantum chains.
arXiv Detail & Related papers (2021-04-18T07:34:22Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.