Scalable entanglement certification via quantum communication
- URL: http://arxiv.org/abs/2401.00796v2
- Date: Fri, 12 Apr 2024 07:20:13 GMT
- Title: Scalable entanglement certification via quantum communication
- Authors: Pharnam Bakhshinezhad, Mohammad Mehboudi, Carles Roch i Carceller, Armin Tavakoli,
- Abstract summary: We show that robust entanglement advantages are possible, but that they are limited by Einstein-Podolsky-Rosen steering.
This leads us to prove entanglement advantages from every entangled two-qubit Werner state, evidence its generalisation to high-dimensional systems and establish a connection to quantum teleportation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Harnessing the advantages of shared entanglement for sending quantum messages often requires the implementation of complex two-particle entangled measurements. We investigate entanglement advantages in protocols that use only the simplest two-particle measurements, namely product measurements. For experiments in which only the dimension of the message is known, we show that robust entanglement advantages are possible, but that they are fundamentally limited by Einstein-Podolsky-Rosen steering. Subsequently, we propose a natural extension of the standard scenario for these experiments and show that it circumvents this limitation. This leads us to prove entanglement advantages from every entangled two-qubit Werner state, evidence its generalisation to high-dimensional systems and establish a connection to quantum teleportation. Our results reveal the power of product measurements for generating quantum correlations in entanglement-assisted communication and they pave the way for practical semi-device-independent entanglement certification well-beyond the constraints of Einstein-Podolsky-Rosen steering.
Related papers
- Certifying classes of $d$-outcome measurements with quantum steering [49.1574468325115]
We provide a construction of a family of steering inequalities tailored to large classes of $d$-outcomes projective measurements.
We prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits.
arXiv Detail & Related papers (2024-10-27T15:32:53Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Weak entanglement improves quantum communication using only product measurements [0.0]
We introduce a communication task corresponding to the cryptographic primitive known as secret sharing.
We show that all steerable two-qubit isotropic states provide a quantum advantage in the success rate using only product measurements.
We then consider a variant of secret sharing based on more sophisticated, yet standard, partial Bell state analysers.
arXiv Detail & Related papers (2023-03-14T13:48:19Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Secure Quantum Remote Sensing Without Entanglement [0.0]
We present an entanglement-free alternative that has advantages in terms of simplicity and practicality, requiring only individual qubits to be transmitted.
We demonstrate the performance of the scheme in both the low and high data limits, showing quantum advantages both in terms of measurement precision and security against a range of possible attacks.
arXiv Detail & Related papers (2023-02-07T17:21:56Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Almost qudits in the prepare-and-measure scenario [0.0]
We introduce and investigate quantum information encoded in carriers that nearly, but not entirely, correspond to standard qudits.
We show how small higher-dimensional components can significantly compromise the conclusions of established protocols.
We also consider viewing almost qubit systems as a physical resource available to the experimenter.
arXiv Detail & Related papers (2022-08-16T18:00:07Z) - Entanglement-assisted quantum communication with simple measurements [0.0]
Dense coding is the seminal example of how entanglement can boost qubit communication.
We show that measurements enable strong and sometimes even optimal entanglement-assisted qubit communication protocols.
Our results reveal that there are scenarios in which the power of entanglement in enhancing quantum communication can be harvested in simple and scalable optical experiments.
arXiv Detail & Related papers (2022-05-19T14:47:38Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimentally accessible bounds on distillable entanglement from
entropic uncertainty relations [0.0]
Entanglement plays a key role in some of the most profound open questions of fundamental physics.
Measuring, or even bounding, entanglement experimentally has proven to be an outstanding challenge.
We use entropic uncertainty relations for bipartite systems to derive measurable lower bounds on distillable entanglement.
arXiv Detail & Related papers (2021-01-21T20:49:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.