Continuous Risk Measures for Driving Support
- URL: http://arxiv.org/abs/2303.08007v1
- Date: Tue, 14 Mar 2023 15:54:37 GMT
- Title: Continuous Risk Measures for Driving Support
- Authors: Julian Eggert and Tim Puphal
- Abstract summary: We compare three model-based risk measures by evaluating their stengths and qualitatively testing them quantitatively.
We derive a novel risk measure based on the statistics of sparse critical events and so-called survival conditions.
The resulting survival analysis shows to have an earlier detection time crashes and less false positive detections in near-crash and non-crash cases supported by its solid theoretical grounding.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we compare three different model-based risk measures by
evaluating their stengths and weaknesses qualitatively and testing them
quantitatively on a set of real longitudinal and intersection scenarios. We
start with the traditional heuristic Time-To-Collision (TTC), which we extend
towards 2D operation and non-crash cases to retrieve the
Time-To-Closest-Encounter (TTCE). The second risk measure models position
uncertainty with a Gaussian distribution and uses spatial occupancy
probabilities for collision risks. We then derive a novel risk measure based on
the statistics of sparse critical events and so-called survival conditions. The
resulting survival analysis shows to have an earlier detection time of crashes
and less false positive detections in near-crash and non-crash cases supported
by its solid theoretical grounding. It can be seen as a generalization of TTCE
and the Gaussian method which is suitable for the validation of ADAS and AD.
Related papers
- Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
SurvivalBoost outperforms 12 state-of-the-art models on 4 real-life datasets.
It provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
arXiv Detail & Related papers (2024-10-22T07:33:34Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We further extend our analysis to the case where the test point has non-trivial correlations with the training set, setting often encountered in time series forecasting.
We validate our theory across a variety of high dimensional data.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
Risk assessment is a central element for the development and validation of Autonomous Vehicles.
Time Headway (TH) and Time-To-Contact (TTC) are commonly used risk metrics and have qualitative relations to occurrence probability.
We present a probabilistic situation risk model based on survival analysis considerations and extend it to naturally incorporate sensory, temporal and behavioral uncertainties.
arXiv Detail & Related papers (2023-03-13T15:22:51Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
We develop a general framework for risk monotonization based on cross-validation.
We propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and boosting.
arXiv Detail & Related papers (2022-05-25T17:41:40Z) - Two steps to risk sensitivity [4.974890682815778]
conditional value-at-risk (CVaR) is a risk measure for modeling human and animal planning.
We adopt a conventional distributional approach to CVaR in a sequential setting and reanalyze the choices of human decision-makers.
We then consider a further critical property of risk sensitivity, namely time consistency, showing alternatives to this form of CVaR.
arXiv Detail & Related papers (2021-11-12T16:27:47Z) - Fast nonlinear risk assessment for autonomous vehicles using learned
conditional probabilistic models of agent futures [19.247932561037487]
This paper presents fast non-sampling based methods to assess the risk for trajectories of autonomous vehicles.
The presented methods address a wide range of representations for uncertain predictions including both Gaussian and non-Gaussian mixture models.
We construct deterministic linear dynamical systems that govern the exact time evolution of the moments of uncertain position.
arXiv Detail & Related papers (2021-09-21T05:55:39Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z) - Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks [14.928328404160299]
We describe a new approach to estimating relative risks in time-to-event prediction problems with censored data.
Our approach does not require making strong assumptions of constant proportional hazard of the underlying survival distribution.
This is the first work involving fully parametric estimation of survival times with competing risks in the presence of censoring.
arXiv Detail & Related papers (2020-03-02T20:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.