Profiling Patient Transcript Using Large Language Model Reasoning Augmentation for Alzheimer's Disease Detection
- URL: http://arxiv.org/abs/2409.12541v1
- Date: Thu, 19 Sep 2024 07:58:07 GMT
- Title: Profiling Patient Transcript Using Large Language Model Reasoning Augmentation for Alzheimer's Disease Detection
- Authors: Chin-Po Chen, Jeng-Lin Li,
- Abstract summary: Alzheimer's disease (AD) stands as the predominant cause of dementia, characterized by a gradual decline in speech and language capabilities.
Recent deep-learning advancements have facilitated automated AD detection through spontaneous speech.
Common transcript-based detection methods directly model text patterns in each utterance without a global view of the patient's linguistic characteristics.
- Score: 4.961581278723015
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Alzheimer's disease (AD) stands as the predominant cause of dementia, characterized by a gradual decline in speech and language capabilities. Recent deep-learning advancements have facilitated automated AD detection through spontaneous speech. However, common transcript-based detection methods directly model text patterns in each utterance without a global view of the patient's linguistic characteristics, resulting in limited discriminability and interpretability. Despite the enhanced reasoning abilities of large language models (LLMs), there remains a gap in fully harnessing the reasoning ability to facilitate AD detection and model interpretation. Therefore, we propose a patient-level transcript profiling framework leveraging LLM-based reasoning augmentation to systematically elicit linguistic deficit attributes. The summarized embeddings of the attributes are integrated into an Albert model for AD detection. The framework achieves 8.51\% ACC and 8.34\% F1 improvements on the ADReSS dataset compared to the baseline without reasoning augmentation. Our further analysis shows the effectiveness of our identified linguistic deficit attributes and the potential to use LLM for AD detection interpretation.
Related papers
- DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of Alzheimer's Disease [13.38075448636078]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease affecting 50 million people worldwide.
Language impairment is one of the earliest signs of cognitive decline, which can be used to discriminate AD patients from normal control individuals.
Patient-interviewer dialogues may be used to detect such impairments, but they are often mixed with ambiguous, noisy, and irrelevant information.
arXiv Detail & Related papers (2025-02-06T04:00:25Z) - Linguistic Features Extracted by GPT-4 Improve Alzheimer's Disease Detection based on Spontaneous Speech [0.9642922440822034]
Alzheimer's Disease (AD) is a significant and growing public health concern.
Large language models (LLMs), such as GPT, have enabled powerful new possibilities for semantic text analysis.
In this study, we leverage GPT-4 to extract five semantic features from transcripts of spontaneous patient speech.
arXiv Detail & Related papers (2024-12-20T10:43:42Z) - AD-LLM: Benchmarking Large Language Models for Anomaly Detection [50.57641458208208]
This paper introduces AD-LLM, the first benchmark that evaluates how large language models can help with anomaly detection.
We examine three key tasks: zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; data augmentation, generating synthetic data and category descriptions to improve AD models; and model selection, using LLMs to suggest unsupervised AD models.
arXiv Detail & Related papers (2024-12-15T10:22:14Z) - Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection [62.942077348224046]
Speech recognition plays an important role in automatic detection of Alzheimer's disease (AD)
Recent studies have revealed a non-linear relationship between word error rates (WER) and AD detection performance.
This work presents a series of analyses to explore the effect of ASR transcription errors in BERT-based AD detection systems.
arXiv Detail & Related papers (2024-12-09T09:32:20Z) - Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease [52.46922921214341]
Alzheimer's disease (AD) has become one of the most significant health challenges in an aging society.
We devised an explainable and effective feature set that leverages the visual capabilities of a large language model (LLM) and the Term Frequency-Inverse Document Frequency (TF-IDF) model.
Our new features can be well explained and interpreted step by step which enhance the interpretability of automatic AD screening.
arXiv Detail & Related papers (2024-11-28T05:23:22Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Influence of ASR and Language Model on Alzheimer's Disease Detection [2.4698886064068555]
We analyse the usage of a SotA ASR system to transcribe participant's spoken descriptions from a picture.
We study the influence of a language model -- which tends to correct non-standard sequences of words -- with the lack of language model to decode the hypothesis from the ASR.
The proposed system combines acoustic -- based on prosody and voice quality -- and lexical features based on the first occurrence of the most common words.
arXiv Detail & Related papers (2021-09-20T10:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.