Progress Note Understanding -- Assessment and Plan Reasoning: Overview
of the 2022 N2C2 Track 3 Shared Task
- URL: http://arxiv.org/abs/2303.08038v1
- Date: Tue, 14 Mar 2023 16:17:55 GMT
- Title: Progress Note Understanding -- Assessment and Plan Reasoning: Overview
of the 2022 N2C2 Track 3 Shared Task
- Authors: Yanjun Gao, Dmitriy Dligach, Timothy Miller, Matthew M Churpek, Ozlem
Uzuner, Majid Afshar
- Abstract summary: We introduce the 2022 National NLP Clinical Challenge (N2C2) Track 3: Progress Note Understanding - Assessment and Plan Reasoning.
The goal of the task was to develop and evaluate NLP systems that automatically predict causal relations between the overall status of the patient contained in the Assessment section and its relation to each component of the Plan section.
We present the results of 2022 n2c2 Track 3 and provide a description of the data, evaluation, participation and system performance.
- Score: 4.867840482657326
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Daily progress notes are common types in the electronic health record (EHR)
where healthcare providers document the patient's daily progress and treatment
plans. The EHR is designed to document all the care provided to patients, but
it also enables note bloat with extraneous information that distracts from the
diagnoses and treatment plans. Applications of natural language processing
(NLP) in the EHR is a growing field with the majority of methods in information
extraction. Few tasks use NLP methods for downstream diagnostic decision
support. We introduced the 2022 National NLP Clinical Challenge (N2C2) Track 3:
Progress Note Understanding - Assessment and Plan Reasoning as one step towards
a new suite of tasks. The Assessment and Plan Reasoning task focuses on the
most critical components of progress notes, Assessment and Plan subsections
where health problems and diagnoses are contained. The goal of the task was to
develop and evaluate NLP systems that automatically predict causal relations
between the overall status of the patient contained in the Assessment section
and its relation to each component of the Plan section which contains the
diagnoses and treatment plans. The goal of the task was to identify and
prioritize diagnoses as the first steps in diagnostic decision support to find
the most relevant information in long documents like daily progress notes. We
present the results of 2022 n2c2 Track 3 and provide a description of the data,
evaluation, participation and system performance.
Related papers
- Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models [73.79091519226026]
Uncertainty of Thoughts (UoT) is an algorithm to augment large language models with the ability to actively seek information by asking effective questions.
In experiments on medical diagnosis, troubleshooting, and the 20 Questions game, UoT achieves an average performance improvement of 38.1% in the rate of successful task completion.
arXiv Detail & Related papers (2024-02-05T18:28:44Z) - A Review of Deep Learning Methods for Photoplethysmography Data [10.27280499967643]
Photoplethysmography is a promising device due to its advantages in portability, user-friendly operation, and non-invasive capabilities.
Recent advancements in deep learning have demonstrated remarkable outcomes by leveraging PPG signals for tasks related to personal health management.
arXiv Detail & Related papers (2024-01-23T14:11:29Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Overview of the Problem List Summarization (ProbSum) 2023 Shared Task on
Summarizing Patients' Active Diagnoses and Problems from Electronic Health
Record Progress Notes [5.222442967088892]
The BioNLP Workshop 2023 initiated the launch of a shared task on Problem List Summarization (ProbSum)
The goal for participants is to develop models that generated a list of diagnoses and problems using input from the daily care notes collected from the hospitalization of critically ill patients.
Eight teams submitted their final systems to the shared task leaderboard.
arXiv Detail & Related papers (2023-06-08T15:19:57Z) - PULSAR: Pre-training with Extracted Healthcare Terms for Summarising
Patients' Problems and Data Augmentation with Black-box Large Language Models [25.363775123262307]
Automatic summarisation of a patient's problems in the form of a problem list can aid stakeholders in understanding a patient's condition, reducing workload and cognitive bias.
BioNLP 2023 Shared Task 1A focuses on generating a list of diagnoses and problems from the provider's progress notes during hospitalisation.
One component employs large language models (LLMs) for data augmentation; the other is an abstractive summarisation LLM with a novel pre-training objective for generating the patients' problems summarised as a list.
Our approach was ranked second among all submissions to the shared task.
arXiv Detail & Related papers (2023-06-05T10:17:50Z) - Summarizing Patients Problems from Hospital Progress Notes Using
Pre-trained Sequence-to-Sequence Models [9.879960506853145]
Problem list summarization requires a model to understand, abstract, and generate clinical documentation.
We propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization.
arXiv Detail & Related papers (2022-08-17T17:07:35Z) - A Scoping Review of Publicly Available Language Tasks in Clinical
Natural Language Processing [7.966218734325912]
We searched six databases, including biomedical research and computer science literature database.
A total of 35 papers with 47 clinical NLP tasks met inclusion criteria between 2007 and 2021.
arXiv Detail & Related papers (2021-12-07T22:49:58Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.