MedPlan:A Two-Stage RAG-Based System for Personalized Medical Plan Generation
- URL: http://arxiv.org/abs/2503.17900v1
- Date: Sun, 23 Mar 2025 02:03:56 GMT
- Title: MedPlan:A Two-Stage RAG-Based System for Personalized Medical Plan Generation
- Authors: Hsin-Ling Hsu, Cong-Tinh Dao, Luning Wang, Zitao Shuai, Thao Nguyen Minh Phan, Jun-En Ding, Chun-Chieh Liao, Pengfei Hu, Xiaoxue Han, Chih-Ho Hsu, Dongsheng Luo, Wen-Chih Peng, Feng Liu, Fang-Ming Hung, Chenwei Wu,
- Abstract summary: We introduce MedPlan, a framework that structures reasoning to align with real-life clinicians.<n>Our approach employs a two-stage architecture that first generates a clinical assessment based on patient symptoms and objective data, then formulates a structured treatment plan informed by this assessment and enriched with patient-specific information through retrieval-augmented generation.
- Score: 21.38221785417373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent success in applying large language models (LLMs) to electronic health records (EHR), most systems focus primarily on assessment rather than treatment planning. We identify three critical limitations in current approaches: they generate treatment plans in a single pass rather than following the sequential reasoning process used by clinicians; they rarely incorporate patient-specific historical context; and they fail to effectively distinguish between subjective and objective clinical information. Motivated by the SOAP methodology (Subjective, Objective, Assessment, Plan), we introduce MedPlan, a novel framework that structures LLM reasoning to align with real-life clinician workflows. Our approach employs a two-stage architecture that first generates a clinical assessment based on patient symptoms and objective data, then formulates a structured treatment plan informed by this assessment and enriched with patient-specific information through retrieval-augmented generation. Comprehensive evaluation demonstrates that our method significantly outperforms baseline approaches in both assessment accuracy and treatment plan quality.
Related papers
- Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
We present a framework that performs knowledge graph construction from raw GP medical notes written during or after patient consultations.
Our knowledge graphs include information about existing patient symptoms, their duration, and their severity.
We apply our framework to consultation notes of COVID-19 patients in the UK.
arXiv Detail & Related papers (2023-06-17T23:35:51Z) - Pruning the Way to Reliable Policies: A Multi-Objective Deep Q-Learning Approach to Critical Care [46.2482873419289]
We introduce a deep Q-learning approach to obtain more reliable critical care policies.
We evaluate our method in off-policy and offline settings using simulated environments and real health records from intensive care units.
arXiv Detail & Related papers (2023-06-13T18:02:57Z) - Progress Note Understanding -- Assessment and Plan Reasoning: Overview
of the 2022 N2C2 Track 3 Shared Task [4.867840482657326]
We introduce the 2022 National NLP Clinical Challenge (N2C2) Track 3: Progress Note Understanding - Assessment and Plan Reasoning.
The goal of the task was to develop and evaluate NLP systems that automatically predict causal relations between the overall status of the patient contained in the Assessment section and its relation to each component of the Plan section.
We present the results of 2022 n2c2 Track 3 and provide a description of the data, evaluation, participation and system performance.
arXiv Detail & Related papers (2023-03-14T16:17:55Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - A Methodology for Bi-Directional Knowledge-Based Assessment of
Compliance to Continuous Application of Clinical Guidelines [1.52292571922932]
We introduce a new approach for automated guideline-based quality assessment of the care process.
The BiKBAC method assesses the degree of compliance when applying clinical guidelines.
The DiscovErr system was evaluated in a separate study in the type 2 diabetes management domain.
arXiv Detail & Related papers (2021-03-13T20:43:45Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - Health improvement framework for planning actionable treatment process
using surrogate Bayesian model [1.2468700211588881]
This study proposes a novel framework to plan treatment processes in a data-driven manner.
A key point of the framework is the evaluation of the "actionability" for personal health improvements.
arXiv Detail & Related papers (2020-10-30T06:02:49Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.