論文の概要: MeshDiffusion: Score-based Generative 3D Mesh Modeling
- arxiv url: http://arxiv.org/abs/2303.08133v1
- Date: Tue, 14 Mar 2023 17:59:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 13:39:58.292533
- Title: MeshDiffusion: Score-based Generative 3D Mesh Modeling
- Title(参考訳): MeshDiffusion: スコアベースの生成3Dメッシュモデリング
- Authors: Zhen Liu, Yao Feng, Michael J. Black, Derek Nowrouzezahrai, Liam
Paull, Weiyang Liu
- Abstract要約: 本研究では,シーンの自動生成と物理シミュレーションのための現実的な3次元形状生成の課題について考察する。
メッシュのグラフ構造を利用して、3Dメッシュを生成するのにシンプルだが非常に効果的な生成モデリング手法を用いる。
具体的には、変形可能な四面体格子でメッシュを表現し、この直接パラメトリゼーション上で拡散モデルを訓練する。
- 参考スコア(独自算出の注目度): 68.40770889259143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of generating realistic 3D shapes, which is useful for a
variety of applications such as automatic scene generation and physical
simulation. Compared to other 3D representations like voxels and point clouds,
meshes are more desirable in practice, because (1) they enable easy and
arbitrary manipulation of shapes for relighting and simulation, and (2) they
can fully leverage the power of modern graphics pipelines which are mostly
optimized for meshes. Previous scalable methods for generating meshes typically
rely on sub-optimal post-processing, and they tend to produce overly-smooth or
noisy surfaces without fine-grained geometric details. To overcome these
shortcomings, we take advantage of the graph structure of meshes and use a
simple yet very effective generative modeling method to generate 3D meshes.
Specifically, we represent meshes with deformable tetrahedral grids, and then
train a diffusion model on this direct parametrization. We demonstrate the
effectiveness of our model on multiple generative tasks.
- Abstract(参考訳): 本稿では,シーンの自動生成や物理シミュレーションなど,様々な応用に有用な現実的な3次元形状を生成するタスクについて考察する。
voxelsやpoint cloudのような他の3d表現と比較して、メッシュは(1)リライトやシミュレーションのために簡単に任意の形状の操作を可能にし、(2)メッシュに最適化されたモダンなグラフィックパイプラインのパワーを十分に活用できるため、実際にはより望ましい。
従来のスケーラブルなメッシュ生成手法では,サブ最適ポストプロセッシングが一般的であり,粒度の細かい幾何学的詳細を必要とせず,過度にスムースあるいはノイズの多い表面を生成する傾向がある。
これらの欠点を克服するために,メッシュのグラフ構造を利用し,単純かつ非常に効果的な生成モデリング手法を用いて3dメッシュを生成する。
具体的には、変形可能な四面体格子でメッシュを表現し、この直接パラメトリゼーション上で拡散モデルを訓練する。
複数の生成タスクにおけるモデルの有効性を示す。
関連論文リスト
- 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
ニューラルネットワークの3次元認識のための効率的な拡散ベースモデルを提案する。
当社のアプローチでは,ShapeNetメッシュなどのトレーニングデータを,連続的占有フィールドに変換することによって前処理する。
本論文では,ShapeNetのオブジェクトクラスにおける3D生成の現状について述べる。
論文 参考訳(メタデータ) (2022-11-30T01:55:52Z) - Neural Volumetric Mesh Generator [40.224769507878904]
新規かつ高品質なボリュームメッシュを生成することができるニューラルボリュームメッシュジェネレータ(NVMG)を提案する。
我々のパイプラインは、ランダムノイズや参照画像から、後処理なしで高品質なアーチファクトフリーのボリュームとサーフェスメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:46:51Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
カメラポーズの有無にかかわらず、少数のカラー画像から3次元メッシュ表現における形状生成の問題について検討する。
我々は,グラフ畳み込みネットワークを用いたクロスビュー情報を活用することにより,形状品質をさらに向上する。
我々のモデルは初期メッシュの品質とカメラポーズの誤差に頑健であり、テスト時間最適化のための微分関数と組み合わせることができる。
論文 参考訳(メタデータ) (2022-04-21T03:42:31Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTetは粗いボクセルのような単純なユーザーガイドを用いて高解像度の3次元形状を合成できる条件付き生成モデルである。
メッシュなどの明示的な表現を直接生成する深部3次元生成モデルとは異なり、我々のモデルは任意の位相で形状を合成することができる。
論文 参考訳(メタデータ) (2021-11-08T05:29:35Z) - Mesh Draping: Parametrization-Free Neural Mesh Transfer [92.55503085245304]
Mesh Drapingは、既存のメッシュ構造をある形状から別の形状に転送するニューラルネットワークである。
我々は、徐々に増加する周波数を活用して、ニューラルネットワークの最適化を導くことにより、安定かつ高品質なメッシュ転送を実現することができることを示す。
論文 参考訳(メタデータ) (2021-10-11T17:24:52Z) - Neural Mesh Flow: 3D Manifold Mesh Generation via Diffeomorphic Flows [79.39092757515395]
ニューラルメッシュフロー (NMF) を用いて, 種数0の2次元メッシュを生成する。
NMFは数個のニューラル正規微分方程式(NODE)ブロックからなる形状自動エンコーダで、球面メッシュを段階的に変形させることで正確なメッシュ形状を学習する。
実験の結果,NMFは単一視点メッシュ再構成,大域的な形状パラメータ化,テクスチャマッピング,形状変形,対応性など,いくつかの応用に役立つことがわかった。
論文 参考訳(メタデータ) (2020-07-21T17:45:41Z) - Discrete Point Flow Networks for Efficient Point Cloud Generation [36.03093265136374]
生成モデルは3次元形状とその統計的バリエーションをモデル化するのに有効であることが証明されている。
任意の大きさの3次元点雲を生成するために,フローの正規化に基づく潜在変数モデルを導入する。
単一ビュー形状再構成では、最先端のボクセル、ポイントクラウド、メッシュベースの手法と同等の結果が得られる。
論文 参考訳(メタデータ) (2020-07-20T14:48:00Z) - Shape from Projections via Differentiable Forward Projector for Computed
Tomography [4.304380400377787]
本稿では,3次元メッシュのフォワードモデルと最適化のギャップを埋める3次元メッシュの微分可能フォワードモデルを提案する。
提案した前方モデルを用いて,プロジェクションから直接3次元形状を再構成する。
単目的問題に対する実験結果から,提案手法はノイズシミュレーションデータ上で従来のボクセル法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-06-29T15:33:30Z) - PolyGen: An Autoregressive Generative Model of 3D Meshes [22.860421649320287]
本稿では,Transformerベースのアーキテクチャを用いてメッシュを直接モデル化するアプローチを提案する。
我々のモデルは、オブジェクトクラス、ボクセル、イメージなど、様々な入力を条件にすることができる。
このモデルでは、高品質で使い勝手の良いメッシュを生成でき、メッシュモデリングタスクのためのログライクなベンチマークを確立することができる。
論文 参考訳(メタデータ) (2020-02-23T17:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。