論文の概要: Deformable 3D Shape Diffusion Model
- arxiv url: http://arxiv.org/abs/2407.21428v1
- Date: Wed, 31 Jul 2024 08:24:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:32:01.689425
- Title: Deformable 3D Shape Diffusion Model
- Title(参考訳): 変形可能な3次元形状拡散モデル
- Authors: Dengsheng Chen, Jie Hu, Xiaoming Wei, Enhua Wu,
- Abstract要約: 包括的3次元形状操作を容易にする新しい変形可能な3次元形状拡散モデルを提案する。
点雲生成における最先端性能とメッシュ変形の競争結果を示す。
本手法は,バーチャルリアリティの領域において,3次元形状操作の進展と新たな機会の解放のためのユニークな経路を提供する。
- 参考スコア(独自算出の注目度): 21.42513407755273
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Gaussian diffusion model, initially designed for image generation, has recently been adapted for 3D point cloud generation. However, these adaptations have not fully considered the intrinsic geometric characteristics of 3D shapes, thereby constraining the diffusion model's potential for 3D shape manipulation. To address this limitation, we introduce a novel deformable 3D shape diffusion model that facilitates comprehensive 3D shape manipulation, including point cloud generation, mesh deformation, and facial animation. Our approach innovatively incorporates a differential deformation kernel, which deconstructs the generation of geometric structures into successive non-rigid deformation stages. By leveraging a probabilistic diffusion model to simulate this step-by-step process, our method provides a versatile and efficient solution for a wide range of applications, spanning from graphics rendering to facial expression animation. Empirical evidence highlights the effectiveness of our approach, demonstrating state-of-the-art performance in point cloud generation and competitive results in mesh deformation. Additionally, extensive visual demonstrations reveal the significant potential of our approach for practical applications. Our method presents a unique pathway for advancing 3D shape manipulation and unlocking new opportunities in the realm of virtual reality.
- Abstract(参考訳): 画像生成用に最初に設計されたガウス拡散モデルは、最近3Dポイントクラウド生成に適応した。
しかし、これらの適応は3次元形状の内在的な幾何学的特性を十分に考慮していないため、拡散モデルの3次元形状操作の可能性は制限されている。
この制限に対処するために、ポイントクラウド生成、メッシュ変形、顔アニメーションを含む包括的3次元形状操作を容易にする、変形可能な新しい3次元形状拡散モデルを導入する。
提案手法は, 幾何構造の生成を連続的な非剛性変形段階に分解する微分変形カーネルを革新的に組み込んだものである。
このステップ・バイ・ステップ・プロセスのシミュレーションに確率的拡散モデルを活用することで,グラフィクスレンダリングから表情アニメーションまで幅広いアプリケーションに対して,汎用的で効率的なソリューションを提供する。
実証的な証拠は、我々のアプローチの有効性を強調し、ポイントクラウド生成における最先端のパフォーマンスとメッシュ変形の競争結果を示している。
さらに、広範囲な視覚的なデモンストレーションにより、我々のアプローチが実用的な応用にもたらす有意義な可能性を明らかにした。
本手法は,バーチャルリアリティの領域において,3次元形状操作の進展と新たな機会の解放のためのユニークな経路を提供する。
関連論文リスト
- GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation [75.39457097832113]
本稿では,インタラクティブなポイントクラウド構造ラテント空間を備えたスケーラブルで高品質な3D生成を実現する,新しい3D生成フレームワークを提案する。
本フレームワークでは,複数ビューのRGB-D(epth)-N(ormal)レンダリングを入力として使用する変分オートエンコーダを,3次元形状情報を保存する独自のラテント空間設計を用いて構成する。
提案手法であるGaussianAnythingは,複数モード条件付き3D生成をサポートし,ポイントクラウド,キャプション,シングル/マルチビュー画像入力を可能にする。
論文 参考訳(メタデータ) (2024-11-12T18:59:32Z) - AnimateMe: 4D Facial Expressions via Diffusion Models [72.63383191654357]
拡散モデルの最近の進歩により、2次元アニメーションにおける生成モデルの能力が向上した。
グラフニューラルネットワーク(GNN)は,メッシュ空間上で直接拡散過程を定式化し,新しい手法で拡散モデルを記述する。
これにより、メッシュ拡散モデルによる顔の変形の発生が容易になる。
論文 参考訳(メタデータ) (2024-03-25T21:40:44Z) - Neural Point Cloud Diffusion for Disentangled 3D Shape and Appearance Generation [29.818827785812086]
コントロール可能な3Dアセットの生成は、映画、ゲーム、エンジニアリングにおけるコンテンツ作成やAR/VRなど、多くの実用的なアプリケーションにとって重要である。
本稿では,3次元拡散モデルに対して,ハイブリッド点雲とニューラル放射場アプローチを導入することで,絡み合いを実現するための適切な表現を提案する。
論文 参考訳(メタデータ) (2023-12-21T18:46:27Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
我々は、前例のない次元に拡大することで、3次元形状生成において画期的なブレークスルーを示す。
現在までに最大の3次元形状生成モデルとしてArgus-3Dが確立されている。
論文 参考訳(メタデータ) (2023-06-20T13:01:19Z) - Locally Attentional SDF Diffusion for Controllable 3D Shape Generation [24.83724829092307]
本研究では,2次元スケッチ画像入力を用いて3次元形状をモデル化する拡散型3次元生成フレームワークを提案する。
本手法は, 2段階拡散モデルを用いて構築され, その第1段階である占有拡散は, 低分解能占有場を生成し, 形状シェルを近似することを目的としている。
SDF拡散と呼ばれる第2段階は、第1段階によって決定された占有ボクセル内の高分解能符号距離場を合成し、微細な幾何を抽出する。
論文 参考訳(メタデータ) (2023-05-08T05:07:23Z) - Generative Novel View Synthesis with 3D-Aware Diffusion Models [96.78397108732233]
単一入力画像から3D対応の新規ビュー合成のための拡散モデルを提案する。
提案手法は既存の2次元拡散バックボーンを利用するが,重要な点として,幾何学的先行を3次元特徴体積の形で組み込む。
新たなビュー生成に加えて,本手法は3次元一貫性シーケンスを自己回帰的に合成する機能を備えている。
論文 参考訳(メタデータ) (2023-04-05T17:15:47Z) - MeshDiffusion: Score-based Generative 3D Mesh Modeling [68.40770889259143]
本研究では,シーンの自動生成と物理シミュレーションのための現実的な3次元形状生成の課題について考察する。
メッシュのグラフ構造を利用して、3Dメッシュを生成するのにシンプルだが非常に効果的な生成モデリング手法を用いる。
具体的には、変形可能な四面体格子でメッシュを表現し、この直接パラメトリゼーション上で拡散モデルを訓練する。
論文 参考訳(メタデータ) (2023-03-14T17:59:01Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
ニューラルネットワークの3次元認識のための効率的な拡散ベースモデルを提案する。
当社のアプローチでは,ShapeNetメッシュなどのトレーニングデータを,連続的占有フィールドに変換することによって前処理する。
本論文では,ShapeNetのオブジェクトクラスにおける3D生成の現状について述べる。
論文 参考訳(メタデータ) (2022-11-30T01:55:52Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
カメラポーズの有無にかかわらず、少数のカラー画像から3次元メッシュ表現における形状生成の問題について検討する。
我々は,グラフ畳み込みネットワークを用いたクロスビュー情報を活用することにより,形状品質をさらに向上する。
我々のモデルは初期メッシュの品質とカメラポーズの誤差に頑健であり、テスト時間最適化のための微分関数と組み合わせることができる。
論文 参考訳(メタデータ) (2022-04-21T03:42:31Z) - 3D Shape Generation and Completion through Point-Voxel Diffusion [24.824065748889048]
3次元形状の確率的生成モデリングのための新しいアプローチを提案する。
Point-Voxel Diffusion (PVD) は、無条件形状生成と条件付き多モード形状完成のための統一的確率的定式化である。
PVDは、観測点雲データからガウスノイズへの拡散過程を逆転させ、(条件付き)確率関数に束縛された変動下限を最適化することにより、一連のデノナイズステップと見なすことができる。
論文 参考訳(メタデータ) (2021-04-08T10:38:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。