論文の概要: Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
- arxiv url: http://arxiv.org/abs/2308.05371v1
- Date: Thu, 10 Aug 2023 06:40:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 13:28:35.566265
- Title: Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
- Title(参考訳): 勾配型メッシュ最適化のためのフレキシブルイソサーフェス抽出
- Authors: Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian
Wang, Wenzheng Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, Jun Gao
- Abstract要約: 本研究では、勾配に基づくメッシュ最適化について考察し、スカラー場の等曲面として表現することで、3次元表面メッシュを反復的に最適化する。
我々は、幾何学的、視覚的、あるいは物理的目的に対して未知のメッシュを最適化するために特別に設計された、異面表現であるFlexiCubesを紹介する。
- 参考スコア(独自算出の注目度): 65.76362454554754
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work considers gradient-based mesh optimization, where we iteratively
optimize for a 3D surface mesh by representing it as the isosurface of a scalar
field, an increasingly common paradigm in applications including
photogrammetry, generative modeling, and inverse physics. Existing
implementations adapt classic isosurface extraction algorithms like Marching
Cubes or Dual Contouring; these techniques were designed to extract meshes from
fixed, known fields, and in the optimization setting they lack the degrees of
freedom to represent high-quality feature-preserving meshes, or suffer from
numerical instabilities. We introduce FlexiCubes, an isosurface representation
specifically designed for optimizing an unknown mesh with respect to geometric,
visual, or even physical objectives. Our main insight is to introduce
additional carefully-chosen parameters into the representation, which allow
local flexible adjustments to the extracted mesh geometry and connectivity.
These parameters are updated along with the underlying scalar field via
automatic differentiation when optimizing for a downstream task. We base our
extraction scheme on Dual Marching Cubes for improved topological properties,
and present extensions to optionally generate tetrahedral and
hierarchically-adaptive meshes. Extensive experiments validate FlexiCubes on
both synthetic benchmarks and real-world applications, showing that it offers
significant improvements in mesh quality and geometric fidelity.
- Abstract(参考訳): グラデーションに基づくメッシュ最適化について考察し、スカラー場の等曲面として表現することで、3次元表面メッシュを反復的に最適化する。
既存の実装では、マーチングキューブやデュアルコントーリングのような古典的な等面抽出アルゴリズムが採用されており、これらの手法は固定された既知のフィールドからメッシュを抽出するように設計されている。
我々は,幾何学的,視覚的,あるいは物理的目的に関して未知のメッシュを最適化するために特別に設計された等表面表現であるflexicubesを紹介する。
我々の主な洞察は、抽出されたメッシュ形状と接続性に対する局所的なフレキシブルな調整を可能にする、追加の綿密なパラメータを表現に導入することである。
これらのパラメータは、下流タスクを最適化する際に自動的に微分することで、基礎となるスカラーフィールドと共に更新される。
我々は,2重マーチングキューブをベースとして位相特性を改良し,四面体および階層的適応メッシュを任意に生成する拡張を提案する。
大規模な実験は、FlexiCubesを合成ベンチマークと実世界のアプリケーションの両方で検証し、メッシュの品質と幾何学的忠実性に大きな改善をもたらすことを示した。
関連論文リスト
- LinPrim: Linear Primitives for Differentiable Volumetric Rendering [53.780682194322225]
線形プリミティブ-オクタヘドラとテトラヘドラ-ボスに基づく2つの新しいシーン表現を導入する。
この定式化は、ダウンストリームアプリケーションのオーバーヘッドを最小限にする、標準メッシュベースのツールと自然に一致します。
再現精度を向上するためにプリミティブを減らしながら,最先端のボリューム手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2025-01-27T18:49:38Z) - 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering [8.59572577251833]
ガウス関数から推定される符号距離関数の勾配を用いた新しい正規化法を提案する。
我々は、Mip-NeRF360、Tamps and Temples、Deep-Blendingなどのデータセットに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2025-01-14T18:40:33Z) - GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction [79.42244344704154]
GausSurfは、テクスチャリッチな領域におけるマルチビュー一貫性と、シーンのテクスチャレスな領域における通常の事前の幾何学的ガイダンスを採用している。
本手法は,再現性や計算時間の観点から,最先端の手法を超越した手法である。
論文 参考訳(メタデータ) (2024-11-29T03:54:54Z) - NASM: Neural Anisotropic Surface Meshing [38.8654207201197]
本稿では、異方性表面メッシュのための学習に基づく新しい手法NASMを提案する。
鍵となるアイデアは、入力メッシュを高次元ユークリッド埋め込み空間に埋め込み、曲率ベースの異方性計量を保存することである。
そこで,本研究では,新たに生成した高次元埋め込みにおける特徴感リメッシングを提案し,鮮明な幾何学的特徴を自動キャプチャする。
論文 参考訳(メタデータ) (2024-10-30T15:20:10Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
本研究では,FAM(Flatten Anything Model)を導入し,グローバルな自由境界面パラメータ化を実現する。
従来の手法と比較して,FAMは接続情報を活用することなく,個別の面上で直接動作する。
当社のFAMは前処理を必要とせずに完全に自動化されており,高度に複雑なトポロジを扱うことができる。
論文 参考訳(メタデータ) (2024-05-23T14:39:52Z) - PRS: Sharp Feature Priors for Resolution-Free Surface Remeshing [30.28380889862059]
本稿では,自動特徴検出とリメッシングのためのデータ駆動方式を提案する。
提案アルゴリズムは,Fスコアの26%,知覚値の42%がtextRMSE_textv$である。
論文 参考訳(メタデータ) (2023-11-30T12:15:45Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - MeshDiffusion: Score-based Generative 3D Mesh Modeling [68.40770889259143]
本研究では,シーンの自動生成と物理シミュレーションのための現実的な3次元形状生成の課題について考察する。
メッシュのグラフ構造を利用して、3Dメッシュを生成するのにシンプルだが非常に効果的な生成モデリング手法を用いる。
具体的には、変形可能な四面体格子でメッシュを表現し、この直接パラメトリゼーション上で拡散モデルを訓練する。
論文 参考訳(メタデータ) (2023-03-14T17:59:01Z) - Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid
Representations [21.64457003420851]
我々は,幾何認識によるサンプリングと正規化を課すことができるハイブリッドニューラルサーフェス表現を開発した。
本手法は、多視点画像や点群から神経暗黙面を再構築する技術を改善するために適用できることを実証する。
論文 参考訳(メタデータ) (2020-12-11T15:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。