論文の概要: Automated patent extraction powers generative modeling in focused
chemical spaces
- arxiv url: http://arxiv.org/abs/2303.08272v1
- Date: Tue, 14 Mar 2023 23:26:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 18:24:43.254387
- Title: Automated patent extraction powers generative modeling in focused
chemical spaces
- Title(参考訳): 集束化学空間における自動特許抽出パワー生成モデル
- Authors: Akshay Subramanian, Kevin Greenman, Alexis Gervaix, Tzuhsiung Yang,
Rafael G\'omez-Bombarelli
- Abstract要約: 深い生成モデルが逆分子設計のエキサイティングな道として登場した。
材料科学と化学への適用性における重要な課題の1つは、プロパティラベル付きでスケール可能なトレーニングデータセットにアクセスできないことである。
我々は、特許のデジタルファイルから、人間の介入を最小限に抑えた新しい候補を生み出すための自動パイプラインを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep generative models have emerged as an exciting avenue for inverse
molecular design, with progress coming from the interplay between training
algorithms and molecular representations. One of the key challenges in their
applicability to materials science and chemistry has been the lack of access to
sizeable training datasets with property labels. Published patents contain the
first disclosure of new materials prior to their publication in journals, and
are a vast source of scientific knowledge that has remained relatively untapped
in the field of data-driven molecular design. Because patents are filed seeking
to protect specific uses, molecules in patents can be considered to be weakly
labeled into application classes. Furthermore, patents published by the US
Patent and Trademark Office (USPTO) are downloadable and have machine-readable
text and molecular structures. In this work, we train domain-specific
generative models using patent data sources by developing an automated pipeline
to go from USPTO patent digital files to the generation of novel candidates
with minimal human intervention. We test the approach on two in-class extracted
datasets, one in organic electronics and another in tyrosine kinase inhibitors.
We then evaluate the ability of generative models trained on these in-class
datasets on two categories of tasks (distribution learning and property
optimization), identify strengths and limitations, and suggest possible
explanations and remedies that could be used to overcome these in practice.
- Abstract(参考訳): 深層生成モデルは逆分子設計のエキサイティングな道として登場し、訓練アルゴリズムと分子表現の相互作用から進歩している。
材料科学と化学に適用可能な重要な課題の1つは、プロパティラベルを持つ大規模トレーニングデータセットにアクセスできないことだ。
出版される特許は、ジャーナルに掲載される前に新しい素材を初めて開示することを含み、データ駆動分子設計の分野では比較的未知の科学知識の膨大な情報源である。
特定の用途を保護するために特許が出願されるため、特許の分子はアプリケーションクラスに弱いラベルを付けることができる。
さらに、米国特許商標庁(uspto)が発行する特許はダウンロード可能であり、機械可読テキストおよび分子構造を有する。
本研究では,USPTO特許のデジタルファイルから,人間の介入を最小限に抑えた新規候補を生成するための自動パイプラインを開発することで,特許データソースを用いたドメイン固有生成モデルを訓練する。
本手法は,有機エレクトロニクスとチロシンキナーゼ阻害薬の2種類のin-class抽出データセットでテストした。
次に、これらのクラス内データセットでトレーニングされた生成モデルの能力(分散学習とプロパティ最適化)を評価し、強みと限界を特定し、実際にこれらを克服するために使用できる説明と改善を提案する。
関連論文リスト
- Pap2Pat: Towards Automated Paper-to-Patent Drafting using Chunk-based Outline-guided Generation [13.242188189150987]
PAP2PATは、文書概要を含む1.8kの特許と特許のペアの新しい挑戦的なベンチマークである。
現在のオープンウェイト LLM とアウトライン誘導型ジェネレーションによる実験は,特許言語の本質的な反復性のために,論文からの情報を効果的に活用できるが,繰り返しに苦慮していることを示している。
論文 参考訳(メタデータ) (2024-10-09T15:52:48Z) - ClaimCompare: A Data Pipeline for Evaluation of Novelty Destroying Patent Pairs [2.60235825984014]
我々は、IRおよびMLモデルのトレーニングに適したラベル付き特許請求データセットを生成するように設計された、新しいデータパイプラインであるCrimCompareを紹介する。
私たちの知る限りでは、ClaymCompareは、特許データセットを破壊する新規性を複数生成できる最初のパイプラインです。
論文 参考訳(メタデータ) (2024-07-16T21:38:45Z) - Automated Neural Patent Landscaping in the Small Data Regime [6.284464997330885]
近年の特許活動の急速な拡大により、効率的かつ効果的な自動的特許造成アプローチの必要性が高まっている。
本稿では, 難解な事例に対して, 性能を著しく向上させる, 自動型ニューラルネットワーク特許造園システムを提案する。
論文 参考訳(メタデータ) (2024-07-10T19:13:37Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - Graph Representation Learning Towards Patents Network Analysis [2.202803272456695]
この研究は、イランの公式ガゼットに登録された特許データの作成、分析、検索にグラフ表現学習アプローチを採用した。
イランの特許グラフをスクラッチから作成するために、スクラップされた特許データセットから重要なエンティティが抽出された。
新たなグラフアルゴリズムとテキストマイニング手法の活用により,イランの特許データから新たな産業分野と研究分野を特定した。
論文 参考訳(メタデータ) (2023-09-25T05:49:40Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
ハーバードUSPTO特許データセット(HUPD)について紹介する。
450万件以上の特許文書があり、HUPDは同等のコーパスの2倍から3倍の大きさだ。
各アプリケーションのメタデータとすべてのテキストフィールドを提供することで、このデータセットは研究者が新しいNLPタスクセットを実行することを可能にする。
論文 参考訳(メタデータ) (2022-07-08T17:57:15Z) - MONAI Label: A framework for AI-assisted Interactive Labeling of 3D
Medical Images [49.664220687980006]
注釈付きデータセットの欠如は、タスク固有の教師付き機械学習モデルをトレーニングする上で、大きなボトルネックとなる。
本稿では,人工知能(AI)モデルに基づくアプリケーション開発を支援する,フリーかつオープンソースなフレームワークであるmonAI Labelを紹介する。
論文 参考訳(メタデータ) (2022-03-23T12:33:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。