論文の概要: Intelligent System for Automated Molecular Patent Infringement Assessment
- arxiv url: http://arxiv.org/abs/2412.07819v2
- Date: Mon, 13 Jan 2025 03:03:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:27:58.553115
- Title: Intelligent System for Automated Molecular Patent Infringement Assessment
- Title(参考訳): 自動分子特許侵害評価のためのインテリジェントシステム
- Authors: Yaorui Shi, Sihang Li, Taiyan Zhang, Xi Fang, Jiankun Wang, Zhiyuan Liu, Guojiang Zhao, Zhengdan Zhu, Zhifeng Gao, Renxin Zhong, Linfeng Zhang, Guolin Ke, Weinan E, Hengxing Cai, Xiang Wang,
- Abstract要約: PatentFinderは、特許侵害のための小さな分子を正確かつ包括的に評価できる、新しいマルチエージェントおよびツール強化インテリジェンスシステムである。
PatentFinderは、特許請求と分子構造を協調的に分析する5つの特殊エージェントを備えている。
PatentFinderは、詳細かつ解釈可能な特許侵害報告を自律的に生成し、精度の向上と解釈可能性の向上を示す。
- 参考スコア(独自算出の注目度): 38.48937966447085
- License:
- Abstract: Automated drug discovery offers significant potential for accelerating the development of novel therapeutics by substituting labor-intensive human workflows with machine-driven processes. However, molecules generated by artificial intelligence may unintentionally infringe on existing patents, posing legal and financial risks that impede the full automation of drug discovery pipelines. This paper introduces PatentFinder, a novel multi-agent and tool-enhanced intelligence system that can accurately and comprehensively evaluate small molecules for patent infringement. PatentFinder features five specialized agents that collaboratively analyze patent claims and molecular structures with heuristic and model-based tools, generating interpretable infringement reports. To support systematic evaluation, we curate MolPatent-240, a benchmark dataset tailored for patent infringement assessment algorithms. On this benchmark, PatentFinder outperforms baseline methods that rely solely on large language models or specialized chemical tools, achieving a 13.8% improvement in F1-score and a 12% increase in accuracy. Additionally, PatentFinder autonomously generates detailed and interpretable patent infringement reports, showcasing enhanced accuracy and improved interpretability. The high accuracy and interpretability of PatentFinder make it a valuable and reliable tool for automating patent infringement assessments, offering a practical solution for integrating patent protection analysis into the drug discovery pipeline.
- Abstract(参考訳): 自動化された薬物発見は、労働集約的な人間のワークフローを機械駆動のプロセスに置き換えることで、新しい治療法の開発を加速する大きな可能性を秘めている。
しかし、人工知能によって生成された分子は、故意に既存の特許を侵害し、薬物発見パイプラインの完全な自動化を妨げる法的および経済的リスクを生じさせる可能性がある。
本稿では,特許侵害のための小分子を高精度かつ包括的に評価できる,新しい多エージェント・ツール強化インテリジェンスシステムであるPatentFinderを紹介する。
PatentFinderは、特許請求や分子構造をヒューリスティックでモデルベースのツールで協調的に分析し、解釈可能な侵害報告を生成する5つの特殊エージェントを備えている。
システム評価を支援するため,特許侵害評価アルゴリズムに適したベンチマークデータセットである MolPatent-240 をキュレートした。
このベンチマークでは、PatentFinderは、大規模な言語モデルや特殊な化学ツールにのみ依存するベースライン手法よりも優れており、F1スコアの13.8%の改善と12%の精度の向上を実現している。
さらに、PatentFinderは、詳細かつ解釈可能な特許侵害レポートを自律的に生成し、精度の向上と解釈可能性の向上を示す。
PatentFinderの精度と解釈性の高さは、特許侵害評価を自動化し、医薬品発見パイプラインに特許保護分析を統合するための実用的なソリューションを提供する、価値があり信頼性の高いツールである。
関連論文リスト
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - Quantum Computing-Enhanced Algorithm Unveils Novel Inhibitors for KRAS [10.732020360180773]
我々は16量子ビットのIBM量子コンピュータでトレーニングされた量子アルゴリズムのパワーをシームレスに統合する量子古典的生成モデルを導入する。
我々の研究は、実験で確認された生物学的ヒットを生み出すために量子生成モデルを使用した初めてのものである。
論文 参考訳(メタデータ) (2024-02-13T04:19:06Z) - Hybrid quantum cycle generative adversarial network for small molecule
generation [0.0]
本研究は、パラメタライズド量子回路の既知の分子生成逆数ネットワークへの工学的統合に基づく、いくつかの新しい生成逆数ネットワークモデルを導入する。
導入された機械学習モデルには、強化学習原理に基づく新しいマルチパラメータ報酬関数が組み込まれている。
論文 参考訳(メタデータ) (2023-12-28T14:10:26Z) - Automated patent extraction powers generative modeling in focused
chemical spaces [0.0]
深い生成モデルが逆分子設計のエキサイティングな道として登場した。
材料科学と化学への適用性における重要な課題の1つは、プロパティラベル付きでスケール可能なトレーニングデータセットにアクセスできないことである。
我々は、特許のデジタルファイルから、人間の介入を最小限に抑えた新しい候補を生み出すための自動パイプラインを開発する。
論文 参考訳(メタデータ) (2023-03-14T23:26:55Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
機能性分子の発見は高価で時間を要するプロセスである。
初期の薬物発見への関心が高まる技術のひとつに、デ・ノボの分子生成と最適化がある。
これらの手法は、多目的関数の最大化を目的とした新しい分子構造を示唆することができる。
しかし、これらのアプローチの実用性は、合成可能性の無知によって汚される。
論文 参考訳(メタデータ) (2020-02-17T15:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。