論文の概要: ResDiff: Combining CNN and Diffusion Model for Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2303.08714v2
- Date: Thu, 16 Mar 2023 00:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 11:23:27.874865
- Title: ResDiff: Combining CNN and Diffusion Model for Image Super-Resolution
- Title(参考訳): ResDiff:超解像のためのCNNと拡散モデルの組み合わせ
- Authors: Shuyao Shang, Zhengyang Shan, Guangxing Liu, Jinglin Zhang
- Abstract要約: ResDiffは単一画像超解法のための残差構造に基づく新しい拡散確率モデルである。
ResDiffは,より短いモデル収束時間,優れた生成品質,より多様なサンプルで,従来の拡散法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.4639614201309774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting the Diffusion Probabilistic Model (DPM) for direct image
super-resolution is wasteful, given that a simple Convolutional Neural Network
(CNN) can recover the main low-frequency content. Therefore, we present
ResDiff, a novel Diffusion Probabilistic Model based on Residual structure for
Single Image Super-Resolution (SISR). ResDiff utilizes a combination of a CNN,
which restores primary low-frequency components, and a DPM, which predicts the
residual between the ground-truth image and the CNN-predicted image. In
contrast to the common diffusion-based methods that directly use LR images to
guide the noise towards HR space, ResDiff utilizes the CNN's initial prediction
to direct the noise towards the residual space between HR space and
CNN-predicted space, which not only accelerates the generation process but also
acquires superior sample quality. Additionally, a frequency-domain-based loss
function for CNN is introduced to facilitate its restoration, and a
frequency-domain guided diffusion is designed for DPM on behalf of predicting
high-frequency details. The extensive experiments on multiple benchmark
datasets demonstrate that ResDiff outperforms previous diffusion-based methods
in terms of shorter model convergence time, superior generation quality, and
more diverse samples.
- Abstract(参考訳): 単純な畳み込みニューラルネットワーク(cnn)が主低周波コンテンツを復元できるため、拡散確率モデル(dpm)を直接画像の超解像に適応することは無駄である。
そこで,Single Image Super-Resolution (SISR)のための残像構造に基づく拡散確率モデルResDiffを提案する。
ResDiffは、一次低周波成分を復元するCNNと、地上構造画像とCNN予測画像の間の残差を予測するDPMを組み合わせる。
MR画像を直接HR空間へ誘導する拡散法とは対照的に、ResDiffはCNNの初期予測を利用して、HR空間とCNN予測空間の間の残留空間に向けてノイズを誘導し、生成プロセスを加速するだけでなく、優れたサンプル品質を得る。
また, 周波数領域に基づくcnnの損失関数を導入し, 復元を容易にするとともに, 周波数領域誘導拡散をdpm向けに設計した。
複数のベンチマークデータセットに関する広範な実験により、ResDiffはモデル収束時間、より優れた生成品質、より多様なサンプルの観点から、従来の拡散ベースの手法よりも優れていることが示された。
関連論文リスト
- ReDi: Efficient Learning-Free Diffusion Inference via Trajectory
Retrieval [74.25860216286988]
ReDiは学習不要なRetrievalベースの拡散サンプリングフレームワークである。
ReDi はモデル推論効率を 2 倍高速化することを示した。
論文 参考訳(メタデータ) (2023-02-05T03:01:28Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
軽量画像合成のためのスリム拡散確率モデル(DPM)のカスタマイズ設計を提案する。
一連の条件および非条件画像生成タスクにおける遅延拡散モデルと比較して,計算複雑性を8-18倍に削減する。
論文 参考訳(メタデータ) (2022-11-27T16:27:28Z) - Adaptive Diffusion Priors for Accelerated MRI Reconstruction [0.2770822269241974]
条件付きモデルは、アンダーサンプリングされたデータを入力として、完全にサンプリングされたデータに出力としてマッピングする。
非条件モデルは、領域シフトに対する信頼性を改善するために生成画像の事前を学習する。
本稿では適応拡散に基づく新しいMRI再構成であるAdaDiffを提案する。
論文 参考訳(メタデータ) (2022-07-12T22:45:08Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
拡散モデルには重要な欠点がある。純粋なガウスノイズから画像を生成するために数千ステップの反復を必要とするため、サンプリングが本質的に遅い。
ガウスノイズから始めることは不要であることを示す。代わりに、より優れた初期化を伴う単一前方拡散から始めると、逆条件拡散におけるサンプリングステップの数を大幅に減少させる。
ComeCloser-DiffuseFaster (CCDF)と呼ばれる新しいサンプリング戦略は、逆問題に対する既存のフィードフォワードニューラルネットワークアプローチが拡散モデルと相乗的に組み合わせられる方法について、新たな洞察を明らかにしている。
論文 参考訳(メタデータ) (2021-12-09T04:28:41Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
論文 参考訳(メタデータ) (2021-06-01T20:34:52Z) - SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models [19.17571465274627]
単一の画像スーパーリゾリューション(SISR)は、与えられた低リゾリューション(LR)画像から高解像度(HR)画像を再構成することを目的とする。
新規な単像超解像拡散確率モデル(SRDiff)を提案する。
SRDiffはデータ可能性の変動境界の変種に最適化されており、多様で現実的なSR予測を提供することができる。
論文 参考訳(メタデータ) (2021-04-30T12:31:25Z) - iSeeBetter: Spatio-temporal video super-resolution using recurrent
generative back-projection networks [0.0]
ビデオ超解像(VSR)に対する新しいGANに基づく構造時間的アプローチiSeeBetterを提案する。
iSeeBetterは、リカレントバックプロジェクションネットワークをジェネレータとして使用して、現在のフレームと隣接するフレームから時空間情報を抽出する。
以上の結果から,iSeeBetterはVSRの忠実度に優れ,最先端の性能に勝ることを示した。
論文 参考訳(メタデータ) (2020-06-13T01:36:30Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
既存の敵防衛手法の大部分は、予測精度を犠牲にして堅牢性を実現することが示されている。
本稿では,ロバストおよび高精度画像分類N(RAIN)と呼ぶ新しい前処理フレームワークを提案する。
RAINは入力に対してランダム化を適用して、モデルフォワード予測パスと後方勾配パスの関係を壊し、モデルロバスト性を改善する。
STL10 と ImageNet のデータセットを用いて、様々な種類の敵攻撃に対する RAIN の有効性を検証する。
論文 参考訳(メタデータ) (2020-04-24T02:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。