論文の概要: Deep Calibration With Artificial Neural Network: A Performance
Comparison on Option Pricing Models
- arxiv url: http://arxiv.org/abs/2303.08760v1
- Date: Wed, 15 Mar 2023 16:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 17:57:37.786139
- Title: Deep Calibration With Artificial Neural Network: A Performance
Comparison on Option Pricing Models
- Title(参考訳): ニューラルネットワークを用いた深部校正:オプション価格モデルにおける性能比較
- Authors: Young Shin Kim, Hyangju Kim, Jaehyung Choi
- Abstract要約: 我々は2つのよく知られたGARCH型オプション価格モデルのパラメータを校正するためにANNを構築した。
我々はモンテカルロシミュレーション(MCS)法で生成されたデータセットを用いてANNを訓練し、最適なパラメータをキャリブレーションする。
その結果、ANNアプローチはMCSを一貫して上回り、訓練後より高速な計算時間を生かしていることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores Artificial Neural Network (ANN) as a model-free solution
for a calibration algorithm of option pricing models. We construct ANNs to
calibrate parameters for two well-known GARCH-type option pricing models:
Duan's GARCH and the classical tempered stable GARCH that significantly improve
upon the limitation of the Black-Scholes model but have suffered from
computation complexity. To mitigate this technical difficulty, we train ANNs
with a dataset generated by Monte Carlo Simulation (MCS) method and apply them
to calibrate optimal parameters. The performance results indicate that the ANN
approach consistently outperforms MCS and takes advantage of faster computation
times once trained. The Greeks of options are also discussed.
- Abstract(参考訳): 本稿では,オプション価格モデルのキャリブレーションアルゴリズムのモデルフリーソリューションとして,ニューラルネットワーク(ANN)について検討する。
我々は,2つのよく知られたGARCH型オプション価格モデル(Duan's GARCH)とBlack-Scholesモデルの制限を著しく改善する古典的テンパレート安定GARCH)のパラメータを校正するために,ANNを構築した。
この技術的難しさを緩和するため,モンテカルロシミュレーション(mcs)法で生成されたデータセットを用いてannを訓練し,最適パラメータの校正に適用した。
その結果、ANNアプローチはMCSを一貫して上回り、訓練後より高速な計算時間を生かしていることがわかった。
オプションのギリシア語も議論されている。
関連論文リスト
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
Adam、Adam、およびそれらの変種のような大規模な勾配アルゴリズムは、この種のトレーニングの開発の中心となっている。
本稿では,事前条件付き勾配最適化手法と,スケールドモーメント手法による分散低減を両立させる枠組みを提案する。
論文 参考訳(メタデータ) (2024-11-15T18:57:39Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback [64.67540769692074]
人間のフィードバックからの強化学習など、アライメント技術で微調整された大規模言語モデル(LLM)は、これまでで最も有能なAIシステムの開発に役立っている。
マージンマッチング選好最適化(MMPO)と呼ばれる手法を導入し、相対的な品質マージンを最適化し、LLMポリシーと報酬モデルを改善する。
人間とAIの両方のフィードバックデータによる実験によると、MMPOはMT-benchやRewardBenchといった一般的なベンチマークにおいて、ベースラインメソッドよりも一貫してパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-10-04T04:56:11Z) - Jump Diffusion-Informed Neural Networks with Transfer Learning for Accurate American Option Pricing under Data Scarcity [1.998862666797032]
本研究は,6つの相互関連モジュールからなる米国オプション価格の包括的枠組みを提案する。
このフレームワークは非線形最適化アルゴリズム、解析モデルと数値モデル、ニューラルネットワークを組み合わせて価格性能を向上させる。
提案したモデルでは、より深い収益源オプションの価格設定において優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-26T17:50:12Z) - Pricing American Options using Machine Learning Algorithms [0.0]
本研究は,モンテカルロシミュレーションを用いて,機械学習アルゴリズムのアメリカ人オプションの価格設定への応用について検討する。
Black-Scholes-Mertonフレームワークのような伝統的なモデルは、しばしばアメリカの選択肢の複雑さに適切に対処できない。
モンテカルロ法とLast Square Methodを併用して機械学習を行った。
論文 参考訳(メタデータ) (2024-09-05T02:52:11Z) - MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing [0.0]
各種ニューラルネットワークアーキテクチャの性能について検討する。
S&P 500 (SPX) とNASDAQ 100 (NDX) の指数オプションは2015-2023年に取引され、成熟期間は15日から4年以上である。
Black & Scholes (BS) の PDE citeBlack1973 モデルでは、実際のデータと同等の価格設定がベンチマークとして使用される。
論文 参考訳(メタデータ) (2024-08-26T21:32:49Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Solving the optimal stopping problem with reinforcement learning: an
application in financial option exercise [0.0]
我々はモンテカルロシミュレーションを用いて、人工ニューラルネットワークのトレーニングとテストを行うデータ駆動方式を採用している。
我々は、畳み込みニューラルネットワーク(CNN)を用いて価格の歴史全体をマルコフ状態に変換する際に生じる次元問題に対処する別のアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T22:52:05Z) - Deep Calibration of Interest Rates Model [0.0]
ディープラーニングの普及にもかかわらず、CIRやガウス家のような古典的なレートモデルはまだ広く使われている。
本稿では,ニューラルネットワークを用いたG2++モデルの5つのパラメータの校正を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:08:45Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。