論文の概要: Convergence and Quantum Advantage of Trotterized MERA for Strongly-Correlated Systems
- arxiv url: http://arxiv.org/abs/2303.08910v2
- Date: Mon, 30 Sep 2024 04:47:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:58:13.752291
- Title: Convergence and Quantum Advantage of Trotterized MERA for Strongly-Correlated Systems
- Title(参考訳): 強相関系におけるトリッター化MERAの収束性と量子アドバンテージ
- Authors: Qiang Miao, Thomas Barthel,
- Abstract要約: 本稿では,特定のトロッター回路に拘束されたテンソルを持つマルチスケールエンタングルメント再正規化アンサッツ(MERA)に基づく変分量子固有解法を提案する。
平均角度振幅はエネルギーの精度に無視できる効果でかなり小さくすることができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Strongly-correlated quantum many-body systems are difficult to study and simulate classically. Our recent work [arXiv:2108.13401] proposed a variational quantum eigensolver (VQE) based on the multiscale entanglement renormalization ansatz (MERA) with tensors constrained to certain Trotter circuits. Here, we determine the scaling of computation costs for various critical spin chains which substantiates a polynomial quantum advantage in comparison to classical MERA simulations based on exact energy gradients or variational Monte Carlo. Algorithmic phase diagrams suggest an even greater separation for higher-dimensional systems. Hence, the Trotterized MERA VQE is a promising route for the efficient investigation of strongly-correlated quantum many-body systems on quantum computers. Furthermore, we show how the convergence can be substantially improved by building up the MERA layer by layer in the initialization stage and by scanning through the phase diagram during optimization. For the Trotter circuits being composed of single-qubit and two-qubit rotations, it is experimentally advantageous to have small rotation angles. We find that the average angle amplitude can be reduced considerably with negligible effect on the energy accuracy. Benchmark simulations suggest that the structure of the Trotter circuits for the TMERA tensors is not decisive; in particular, brick-wall circuits and parallel random-pair circuits yield very similar energy accuracies.
- Abstract(参考訳): 強い相関関係を持つ量子多体系は古典的に研究とシミュレートが難しい。
我々の最近の研究(arXiv:2108.13401)は、ある種のトロッター回路に拘束されたテンソルを持つマルチスケールエンタングルメント再正規化アンサッツ(MERA)に基づく変分量子固有解器(VQE)を提案した。
ここでは, エネルギー勾配やモンテカルロ変分に基づく古典的MERAシミュレーションと比較して, 多項式量子優位性を裏付ける様々な臨界スピン鎖の計算コストのスケーリングを決定する。
アルゴリズム位相図は、高次元系のさらに大きな分離を示唆している。
したがって、Trotterized MERA VQEは量子コンピュータ上の強い相関関係の量子多体系を効率的に研究するための有望な経路である。
さらに,初期化段階の層によってMERA層を構築し,最適化段階の位相図を走査することにより,収束を著しく改善できることを示す。
シングルキュービットと2キュービットの回転からなるトロッター回路では、小さな回転角を持つのが実験的に有利である。
平均角度振幅はエネルギーの精度に無視できる効果でかなり小さくすることができる。
ベンチマークシミュレーションにより、TMERAテンソルのトロッター回路の構造は決定的ではないことが示唆される。
関連論文リスト
- High-fidelity dimer excitations using quantum hardware [1.3977204802483425]
創発多体スピン系の量子単位である量子スピン二量体の力学をシミュレートする。
結果は、高価なINS実験の出力をベンチマークや予測するための重要な道のりを舗装する。
論文 参考訳(メタデータ) (2023-04-12T20:12:28Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - SnCQA: A hardware-efficient equivariant quantum convolutional circuit
architecture [11.404166974371197]
SnCQAは、等変量子畳み込み回路のハードウェア効率の変動回路の集合である。
我々の量子ニューラルネットワークは、置換対称性が存在する機械学習問題を解決するのに適している。
論文 参考訳(メタデータ) (2022-11-23T05:16:26Z) - Circuit Complexity in an interacting quenched Quantum Field Theory [0.0]
量子クエンチが量子場理論の回路複雑性に及ぼす影響について検討する。
待ち行列および相互作用場理論における回路複雑性の解析計算について述べる。
論文 参考訳(メタデータ) (2022-09-07T18:00:03Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - A posteriori corrections to the Iterative Qubit Coupled Cluster method
to minimize the use of quantum resources in large-scale calculations [0.0]
所望の精度を達成するために,iQCCエネルギーに様々な補正を加えて反復回数を削減する。
10-qubit N$$分子、24-qubit H$Oストレッチ、56-qubit Singlet-tripletギャップ計算の例で,本手法の有用性と効率を数値的に示す。
論文 参考訳(メタデータ) (2020-09-28T20:57:32Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
変分量子アルゴリズム (VQA) の中心成分は状態準備回路(英語版)であり、アンザッツ(英語版)または変分形式(英語版)とも呼ばれる。
ここでは、対称性を破るユニタリを組み込んだ「解」を導入することで、このアプローチが必ずしも有利であるとは限らないことを示す。
この研究は、より一般的な対称性を破るアンスの開発に向けた第一歩となり、物理学や化学問題への応用に繋がる。
論文 参考訳(メタデータ) (2020-08-03T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。