論文の概要: Exploring the Relevance of Data Privacy-Enhancing Technologies for AI
Governance Use Cases
- arxiv url: http://arxiv.org/abs/2303.08956v1
- Date: Wed, 15 Mar 2023 21:56:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 17:39:26.490529
- Title: Exploring the Relevance of Data Privacy-Enhancing Technologies for AI
Governance Use Cases
- Title(参考訳): AIガバナンスユースケースにおけるデータプライバシ・エンハンシング技術との関連性を探る
- Authors: Emma Bluemke, Tantum Collins, Ben Garfinkel, Andrew Trask
- Abstract要約: 異なるAIガバナンスの目的を情報フローのシステムとして見ることは有用である。
これらの異なるAIガバナンスソリューション間の相互運用性の重要性は明確になる。
- 参考スコア(独自算出の注目度): 1.5293427903448022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of privacy-enhancing technologies has made immense progress
in reducing trade-offs between privacy and performance in data exchange and
analysis. Similar tools for structured transparency could be useful for AI
governance by offering capabilities such as external scrutiny, auditing, and
source verification. It is useful to view these different AI governance
objectives as a system of information flows in order to avoid partial solutions
and significant gaps in governance, as there may be significant overlap in the
software stacks needed for the AI governance use cases mentioned in this text.
When viewing the system as a whole, the importance of interoperability between
these different AI governance solutions becomes clear. Therefore, it is
imminently important to look at these problems in AI governance as a system,
before these standards, auditing procedures, software, and norms settle into
place.
- Abstract(参考訳): プライバシ強化技術の開発は、データ交換と分析におけるプライバシとパフォーマンスの間のトレードオフを減らすために大きな進歩を遂げています。
構造化された透明性のための同様のツールは、外部監視、監査、ソース検証などの機能を提供することで、AIガバナンスに役立ちます。
これらの異なるAIガバナンスの目的を、部分的なソリューションやガバナンスの大きなギャップを避けるために、情報フローのシステムとして見るのが有用である。
システム全体を眺めると、これらの異なるAIガバナンスソリューション間の相互運用性の重要性が明確になります。
したがって、これらの標準、監査手順、ソフトウェア、規範が定着する前に、AIガバナンスにおけるこれらの問題をシステムとして見ていくことが極めて重要である。
関連論文リスト
- Data-Centric Governance [6.85316573653194]
現在のAIガバナンスアプローチは、主に手作業によるレビューとドキュメントプロセスで構成されている。
データに作用し、データを生成し、データエンジニアリングを通じて構築される。
本研究では、データセットとアルゴリズムによる評価を通じて、ガバナンス要件の体系化について検討する。
論文 参考訳(メタデータ) (2023-02-14T07:22:32Z) - Artificial Intelligence in Governance, Risk and Compliance: Results of a
study on potentials for the application of artificial intelligence (AI) in
governance, risk and compliance (GRC) [0.0]
GRC(Governance, Risk and Compliance)とは、ガバナンスの統合的なアプローチである。
ガバナンス機能は相互にリンクされ、互いに分離されない。
人工知能は、非構造化データセットの処理と分析にGRCで使用されている。
論文 参考訳(メタデータ) (2022-12-07T12:36:10Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Think About the Stakeholders First! Towards an Algorithmic Transparency
Playbook for Regulatory Compliance [14.043062659347427]
世界中の政府によって、公共および民間セクターに導入された人工知能(AI)システムを規制するための法律が提案され、可決されている。
これらの規則の多くは、AIシステムの透明性と、関連する市民意識の問題に対処している。
我々は,透明で規制に適合したシステムを設計する上で,技術者を支援する新たな利害関係者優先のアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-10T09:39:00Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - AI Assurance using Causal Inference: Application to Public Policy [0.0]
ほとんどのAIアプローチは、"ブラックボックス"としてのみ表現することができ、透明性の欠如に悩まされる。
効果的で堅牢なAIシステムを開発するだけでなく、内部プロセスが説明可能で公平であることを確認することも重要です。
論文 参考訳(メタデータ) (2021-12-01T16:03:06Z) - Trustworthy Artificial Intelligence and Process Mining: Challenges and
Opportunities [0.8602553195689513]
プロセスマイニングは、AIコンプライアンスプロセスの実行に事実に基づく可視性を得るために有用なフレームワークを提供することができることを示す。
AI規制コンプライアンスプロセスの不確実性を分析し、修正し、監視する自動化アプローチを提供する。
論文 参考訳(メタデータ) (2021-10-06T12:50:47Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。