論文の概要: ABAW : Facial Expression Recognition in the wild
- arxiv url: http://arxiv.org/abs/2303.09785v1
- Date: Fri, 17 Mar 2023 06:01:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 15:29:59.235857
- Title: ABAW : Facial Expression Recognition in the wild
- Title(参考訳): ABAW : 野生における表情認識
- Authors: Darshan Gera, Badveeti Naveen Siva Kumar, Bobbili Veerendra Raj Kumar,
S Balasubramanian
- Abstract要約: 我々は,完全教師付き,半教師付き,雑音付きラベルアプローチなどの複数のアプローチを用いて,表現分類の問題に対処してきた。
ノイズ認識モデルによるアプローチは,ベースラインモデルよりも10.46%向上した。
- 参考スコア(独自算出の注目度): 3.823356975862006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fifth Affective Behavior Analysis in-the-wild (ABAW) competition has
multiple challenges such as Valence-Arousal Estimation Challenge, Expression
Classification Challenge, Action Unit Detection Challenge, Emotional Reaction
Intensity Estimation Challenge. In this paper we have dealt only expression
classification challenge using multiple approaches such as fully supervised,
semi-supervised and noisy label approach. Our approach using noise aware model
has performed better than baseline model by 10.46% and semi supervised model
has performed better than baseline model by 9.38% and the fully supervised
model has performed better than the baseline by 9.34%
- Abstract(参考訳): 第5回acidive behavior analysis in-the-wild (abaw) コンペティションには,valence-arousal estimation challenge, expression classification challenge, action unit detection challenge, emotional reaction intensity estimation challengeなど,複数の課題がある。
本稿では,完全教師付き,半教師付き,雑音付きラベルアプローチなどの複数のアプローチを用いて,表現分類の問題に対処した。
提案手法は,ベースラインモデルより10.46%,半教師モデルの方が9.38%,完全教師モデルが9.34%,ベースラインモデルより9.34%改善している。
関連論文リスト
- A Comprehensive Evaluation of Large Language Models on Mental Illnesses [0.8458496687170665]
GPT-4とLlama 3はバイナリ障害検出において優れた性能を示し、特定のデータセットで最大85%の精度に達した。
素早いエンジニアリングは モデル性能を高める上で 重要な役割を担った
有望な結果にもかかわらず、我々の分析では、データセット間のパフォーマンスのばらつきや、注意深いプロンプトエンジニアリングの必要性など、いくつかの課題を特定した。
論文 参考訳(メタデータ) (2024-09-24T02:58:52Z) - STOP! Benchmarking Large Language Models with Sensitivity Testing on Offensive Progressions [6.19084217044276]
大規模言語モデル(LLM)における明示的バイアスと暗黙的バイアスの緩和は、自然言語処理の分野において重要な焦点となっている。
我々は,2700のユニークな文を含む450の攻撃的進行を含む,攻撃的進行に関する感性テストデータセットを紹介した。
以上の結果から,最も優れたモデルでさえバイアスを不整合に検出し,成功率は19.3%から69.8%であった。
論文 参考訳(メタデータ) (2024-09-20T18:34:38Z) - The Third Monocular Depth Estimation Challenge [134.16634233789776]
本稿では,モノクロ深度推定チャレンジ(MDEC)の第3版の結果について述べる。
この課題は、自然と屋内の複雑なシーンを特徴とする、挑戦的なSynS-Patchesデータセットへのゼロショットの一般化に焦点を当てている。
挑戦者は17.51%から23.72%の3D Fスコアのパフォーマンスを大幅に改善した。
論文 参考訳(メタデータ) (2024-04-25T17:59:59Z) - Large Language Models Are Also Good Prototypical Commonsense Reasoners [11.108562540123387]
従来の微調整アプローチはリソース集約的であり、モデルの一般化能力を損なう可能性がある。
我々は、調整されたタスクのための大規模モデルの出力からインスピレーションを受け、半自動で新しいプロンプトのセットを開発した。
より優れた設計のプロンプトによって、ProtoQAのリーダーボードで新しい最先端(SOTA)を達成することができます。
論文 参考訳(メタデータ) (2023-09-22T20:07:24Z) - Facial Affective Behavior Analysis Method for 5th ABAW Competition [20.54725479855494]
第5回ABAWコンペティションには、Aff-Wild2データベースからの3つの課題が含まれている。
結果を改善するために,3つの異なるモデルを構築した。
3つの課題の実験では、提供されたトレーニングデータに基づいてモデルをトレーニングし、検証データ上でモデルを検証する。
論文 参考訳(メタデータ) (2023-03-16T08:21:10Z) - Improving Visual Grounding by Encouraging Consistent Gradient-based
Explanations [58.442103936918805]
注意マスク整合性は,従来の方法よりも優れた視覚的グラウンドリング結果が得られることを示す。
AMCは効率的で実装が容易であり、どんな視覚言語モデルでも採用できるため一般的である。
論文 参考訳(メタデータ) (2022-06-30T17:55:12Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
再サンプリングのオーバーヘッドを伴わずに分散を低減するため, GST (Gapped Straight-Through) 推定器を提案する。
この推定子は、Straight-Through Gumbel-Softmaxの本質的な性質に着想を得たものである。
実験により,提案したGST推定器は,2つの離散的な深部生成モデリングタスクの強いベースラインと比較して,優れた性能を享受できることが示された。
論文 参考訳(メタデータ) (2022-06-15T01:46:05Z) - Troubleshooting Blind Image Quality Models in the Wild [99.96661607178677]
グループ最大分化競争(gMAD)は、盲目の画像品質評価(BIQA)モデルを改善するために使用されます。
対象モデルのprunedバージョンのランダムアンサンブルを改善するため、"self-competitors"のセットを構築します。
様々な障害は、自己gMADコンペティションを通じて効率的に識別できる。
論文 参考訳(メタデータ) (2021-05-14T10:10:48Z) - Exposing Shallow Heuristics of Relation Extraction Models with Challenge
Data [49.378860065474875]
我々は、TACREDで訓練されたSOTA関係抽出(RE)モデルの故障モードを同定する。
トレーニングの例として、いくつかの課題データを追加することで、モデルのパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-10-07T21:17:25Z) - From Sound Representation to Model Robustness [82.21746840893658]
本研究では, 環境音の標準的な表現(スペクトログラム)が, 被害者の残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
3つの環境音響データセットの様々な実験から、ResNet-18モデルは、他のディープラーニングアーキテクチャよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-27T17:30:49Z) - Affective Expression Analysis in-the-wild using Multi-Task Temporal
Statistical Deep Learning Model [6.024865915538501]
上記の課題に対処する感情表現分析モデルを提案する。
ABAW Challengeのための大規模データセットであるAff-Wild2データセットを実験した。
論文 参考訳(メタデータ) (2020-02-21T04:06:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。